scholarly journals A Cold-Shock Protein from the South Pole-Dwelling Soil Bacterium Arthrobacter sp. Confers Cold Tolerance to Rice

Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1589
Author(s):  
So Young Kim ◽  
Joung Sug Kim ◽  
Woosuk Cho ◽  
Kyong Mi Jun ◽  
Xiaoxuan Du ◽  
...  

Low temperature is a critical environmental factor restricting the physiology of organisms across kingdoms. In prokaryotes, cold shock induces the expression of various genes and proteins involved in cellular processes. Here, a cold-shock protein (ArCspA) from the South Pole-dwelling soil bacterium Arthrobacter sp. A2-5 was introduced into rice, a monocot model plant species. Four-week-old 35S:ArCspA transgenic rice plants grown in a cold chamber at 4 °C survived for 6 days. Cold stress significantly decreased the chlorophyll content in WT plants after 4 days compared with that in 35S:ArCspA transgenic plants. RNA-seq analysis was performed on WT and 35S:ArCspA transgenic rice with/without cold stress. GO terms such as “response to stress (GO:0006950)”, “response to cold (GO:0009409)”, and “response to heat (GO:0009408)” were significantly enriched among the upregulated genes in the 35S:ArCspA transgenic rice under normal conditions, even without cold-stress treatment. The expression of five cold stress-related genes, Rab16B (Os11g0454200), Rab21 (Os11g0454300), LEA22 (Os01g0702500), ABI5 (Os01 g0859300), and MAPK5 (Os03g0285800), was significantly upregulated in the transgenic rice compared with the WT rice. These results indicate that the ArCspA gene might be involved in the induction of cold-responsive genes and provide cold tolerance.

2014 ◽  
Vol 57 (6) ◽  
pp. 775-782 ◽  
Author(s):  
Seong-Kon Lee ◽  
Sung-Han Park ◽  
Jeong-Won Lee ◽  
Hae-Min Lim ◽  
Sun-Young Jung ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Yong-Mei Jin ◽  
Rihua Piao ◽  
Yong-Feng Yan ◽  
Mojun Chen ◽  
Ling Wang ◽  
...  

Cold stress is one of the most important abiotic stresses in rice. C2H2zinc finger proteins play important roles in response to abiotic stresses in plants. In the present study, we isolated and functionally characterized a new C2H2zinc finger protein transcription factorOsCTZFP8in rice.OsCTZFP8encodes a C2H2zinc finger protein, which contains a typical zinc finger motif, as well as a potential nuclear localization signal (NLS) and a leucine-rich region (L-box). Expression ofOsCTZFP8was differentially induced by several abiotic stresses and was strongly induced by cold stress. Subcellular localization assay and yeast one-hybrid analysis revealed that OsCTZFP8 was a nuclear protein and has transactivation activity. To characterize the function ofOsCTZFP8in rice, the full-length cDNA ofOsCTZFP8was isolated and transgenic rice with overexpression ofOsCTZFP8driven by the maize ubiquitin promoter was generated usingAgrobacterium-mediated transformation. Among 46 independent transgenic lines, 6 single-copy homozygous overexpressing lines were selected by Southern blot analysis and Basta resistance segregation assay in both T1and T2generations. Transgenic rice overexpressingOsCTZFP8exhibited cold tolerant phenotypes with significantly higher pollen fertilities and seed setting rates than nontransgenic control plants. In addition, yield per plant ofOsCTZFP8-expressing lines was significantly (p<0.01) higher than that of nontransgenic control plants under cold treatments. These results demonstrate thatOsCTZFP8was a C2H2zinc finger transcription factor that plays an important role in cold tolerance in rice.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242139
Author(s):  
Hui Dong ◽  
Chao Wu ◽  
Changguo Luo ◽  
Menghan Wei ◽  
Shenchun Qu ◽  
...  

Calcium-dependent protein kinases (CDPKs) are important calcium receptors, which play a crucial part in the process of sensing and decoding intracellular calcium signals during plant development and adaptation to various environmental stresses. In this study, a CDPK gene MdCPK1a, was isolated from apple (Malus×domestica) which contains 1701bp nucleotide and encodes a protein of 566 amino acid residues, and contains the conserved domain of CDPKs. The transient expression and western blot experiment showed that MdCPK1a protein was localized in the nucleus and cell plasma membrane. Ectopic expression of MdCPK1a in Nicotiana benthamiana increased the resistance of the tobacco plants to salt and cold stresses. The mechanism of MdCPK1a regulating cold resistance was further investigated. The overexpressed MdCPK1a tobacco plants had higher survival rates and longer root length than wild type (WT) plants under cold stress, and the electrolyte leakages (EL), the content of malondialdehyde (MDA) and reactive oxygen species (ROS) were lower, and accordingly, antioxidant enzyme activities, such as superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) were higher, suggesting the transgenic plants suffered less chilling injury than WT plants. Moreover, the transcript levels of ROS-scavenging and stress-related genes were higher in the transgenic plants than those in WT plants whether under normal conditions or cold stress. The above results suggest that the improvement of cold tolerance in MdCPK1a-overexpressed plants was due to scavenging ROS accumulation and modulating the expression of stress-related genes.


Author(s):  
shuxia li ◽  
Zhihao Cheng ◽  
Shiman Dong ◽  
Zhibo Li ◽  
Liangping Zou ◽  
...  

Long non-coding RNAs (lncRNAs) have been considered to be important regulators of gene expression in a range of biological processes in plants. A large number of lncRNAs have been identified in plants. However, most of their biological functions still remain to be determined. Here, we identified total 3 004 lncRNAs in cassava under normal or cold-treated conditions from Iso-seq data. We further characterized a lincRNA, CRIR1, as a novel positive regulator of the plant response to cold stress. CRIR1 can be significantly induced by cold treatment. Overexpression of CRIR1 in cassava enhanced the cold tolerance of transgenic plants. Transcriptome analysis demonstrated that CRIR1 regulates a range of cold stress-related genes in a CBF-independent pathway. We further found that CRIR1 RNA can interact with MeCSP5, a homolog of the cold shock protein that acts as RNA chaperones, indicating that CRIR1 may recruit MeCSP5 to improve the translation efficiency of mRNA. In summary, our study greatly extends the repertoire of lncRNAs in plants as well as its responding to cold stress. Moreover, it reveals a sophisticated mechanism by which CRIR1 regulates plant cold stress response by modulating the expression of stress-responsive genes and increasing the translational yield.


Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 890 ◽  
Author(s):  
Feiyi Huang ◽  
Jin Wang ◽  
Weike Duan ◽  
Xilin Hou

A cold-related protein, cold shock protein 3 (BcCSP3), was isolated from non-heading Chinese cabbage in this study. BcCSP3 can encode 205 amino acids (aa) with an open reading frame (ORF) of 618 base pairs (bp). Multiple sequence alignment and phylogenetic tree analyses showed that BcCSP3 contains an N-terminal cold shock domain and is highly similar to AtCSP2, their kinship is recent. Real-time quantitative polymerase chain reaction (RT-qPCR) showed that the expression level of BcCSP3 in stems and leaves is higher than that in roots. Compared with other stress treatments, the change in BcCSP3 expression level was most pronounced under cold stress. In addition, a BcCSP3–GFP fusion protein was localized to the nucleus and cytoplasm. These results indicated that BcCSP3 may play an important role in response to cold stress in non-heading Chinese cabbage. This work may provide a reference for the identification and expression analysis of other CSP genes in non-heading Chinese cabbage.


2018 ◽  
Vol 45 ◽  
pp. 31-38
Author(s):  
Federica La Longa ◽  
Massimo Crescimbene ◽  
Lucilla Alfonsi ◽  
Claudio Cesaroni ◽  
Vincenzo Romano
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document