scholarly journals Transcriptome Profiling of Maize (Zea mays L.) Leaves Reveals Key Cold-Responsive Genes, Transcription Factors, and Metabolic Pathways Regulating Cold Stress Tolerance at the Seedling Stage

Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1638
Author(s):  
Joram Kiriga Waititu ◽  
Quan Cai ◽  
Ying Sun ◽  
Yinglu Sun ◽  
Congcong Li ◽  
...  

Cold tolerance is a complex trait that requires a critical perspective to understand its underpinning mechanism. To unravel the molecular framework underlying maize (Zea mays L.) cold stress tolerance, we conducted a comparative transcriptome profiling of 24 cold-tolerant and 22 cold-sensitive inbred lines affected by cold stress at the seedling stage. Using the RNA-seq method, we identified 2237 differentially expressed genes (DEGs), namely 1656 and 581 annotated and unannotated DEGs, respectively. Further analysis of the 1656 annotated DEGs mined out two critical sets of cold-responsive DEGs, namely 779 and 877 DEGs, which were significantly enhanced in the tolerant and sensitive lines, respectively. Functional analysis of the 1656 DEGs highlighted the enrichment of signaling, carotenoid, lipid metabolism, transcription factors (TFs), peroxisome, and amino acid metabolism. A total of 147 TFs belonging to 32 families, including MYB, ERF, NAC, WRKY, bHLH, MIKC MADS, and C2H2, were strongly altered by cold stress. Moreover, the tolerant lines’ 779 enhanced DEGs were predominantly associated with carotenoid, ABC transporter, glutathione, lipid metabolism, and amino acid metabolism. In comparison, the cold-sensitive lines’ 877 enhanced DEGs were significantly enriched for MAPK signaling, peroxisome, ribosome, and carbon metabolism pathways. The biggest proportion of the unannotated DEGs was implicated in the roles of long non-coding RNAs (lncRNAs). Taken together, this study provides valuable insights that offer a deeper understanding of the molecular mechanisms underlying maize response to cold stress at the seedling stage, thus opening up possibilities for a breeding program of maize tolerance to cold stress.

Gene ◽  
2019 ◽  
Vol 692 ◽  
pp. 68-78 ◽  
Author(s):  
Yexiong Qian ◽  
Qiaoyu Ren ◽  
Jing Zhang ◽  
Liang Chen

2019 ◽  
Vol 20 (13) ◽  
pp. 3314 ◽  
Author(s):  
Janah ◽  
Kjeldsen ◽  
Galsgaard ◽  
Winther-Sørensen ◽  
Stojanovska ◽  
...  

Hundred years after the discovery of glucagon, its biology remains enigmatic. Accurate measurement of glucagon has been essential for uncovering its pathological hypersecretion that underlies various metabolic diseases including not only diabetes and liver diseases but also cancers (glucagonomas). The suggested key role of glucagon in the development of diabetes has been termed the bihormonal hypothesis. However, studying tissue-specific knockout of the glucagon receptor has revealed that the physiological role of glucagon may extend beyond blood-glucose regulation. Decades ago, animal and human studies reported an important role of glucagon in amino acid metabolism through ureagenesis. Using modern technologies such as metabolomic profiling, knowledge about the effects of glucagon on amino acid metabolism has been expanded and the mechanisms involved further delineated. Glucagon receptor antagonists have indirectly put focus on glucagon’s potential role in lipid metabolism, as individuals treated with these antagonists showed dyslipidemia and increased hepatic fat. One emerging field in glucagon biology now seems to include the concept of hepatic glucagon resistance. Here, we discuss the roles of glucagon in glucose homeostasis, amino acid metabolism, and lipid metabolism and present speculations on the molecular pathways causing and associating with postulated hepatic glucagon resistance.


PROTOPLASMA ◽  
2020 ◽  
Vol 257 (6) ◽  
pp. 1615-1637
Author(s):  
De-Chuan Wu ◽  
Jia-Fei Zhu ◽  
Zhong-Ze Shu ◽  
Wei Wang ◽  
Cheng Yan ◽  
...  

2013 ◽  
Vol 56 (1) ◽  
pp. 32-38 ◽  
Author(s):  
Xiaohui Shan ◽  
Xiaoyu Wang ◽  
Guang Yang ◽  
Ying Wu ◽  
Shengzhong Su ◽  
...  

2010 ◽  
Vol 9 (3) ◽  
pp. 362-369 ◽  
Author(s):  
Yong-zhong LIU ◽  
Bin TANG ◽  
Yong-lian ZHENG ◽  
Ke-jun MA ◽  
Shang-zhong XU ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-21 ◽  
Author(s):  
Guoxun Chen

The increase in the number of people with obesity- and noninsulin-dependent diabetes mellitus has become a major public health concern. Insulin resistance is a common feature closely associated with human obesity and diabetes. Insulin regulates metabolism, at least in part, via the control of the expression of the hepatic genes involved in glucose and fatty acid metabolism. Insulin resistance is always associated with profound changes of the expression of hepatic genes for glucose and lipid metabolism. As an essential micronutrient, vitamin A (VA) is needed in a variety of physiological functions. The active metablite of VA, retinoic acid (RA), regulates the expression of genes through the activation of transcription factors bound to the RA-responsive elements in the promoters of RA-targeted genes. Recently, retinoids have been proposed to play roles in glucose and lipid metabolism and energy homeostasis. This paper summarizes the recent progresses in our understanding of VA metabolism in the liver and of the potential transcription factors mediating RA responses. These transcription factors are the retinoic acid receptor, the retinoid X receptor, the hepatocyte nuclear factor 4α, the chicken ovalbumin upstream promoter-transcription factor II, and the peroxisome proliferator-activated receptor β/δ. This paper also summarizes the effects of VA status and RA treatments on the glucose and lipid metabolism in vivo and the effects of retinoid treatments on the expression of insulin-regulated genes involved in the glucose and fatty acid metabolism in the primary hepatocytes. I discuss the roles of RA production in the development of insulin resistance in hepatocytes and proposes a mechanism by which RA production may contribute to hepatic insulin resistance. Given the large amount of information and progresses regarding the physiological functions of VA, this paper mainly focuses on the findings in the liver and hepatocytes and only mentions the relative findings in other tissues and cells.


Sign in / Sign up

Export Citation Format

Share Document