scholarly journals A Machine-Learning Method of Predicting Vital Capacity Plateau Value for Ventilatory Pump Failure Based on Data Mining

Healthcare ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1306
Author(s):  
Wenbing Chang ◽  
Xinpeng Ji ◽  
Liping Wang ◽  
Houxiang Liu ◽  
Yue Zhang ◽  
...  

Ventilatory pump failure is a common cause of death for patients with neuromuscular diseases. The vital capacity plateau value (VCPLAT) is an important indicator to judge the status of ventilatory pump failure for patients with congenital myopathy, Duchenne muscular dystrophy and spinal muscular atrophy. Due to the complex relationship between VCPLAT and the patient’s own condition, it is difficult to predict the VCPLAT for pediatric disease from a medical perspective. We established a VCPLAT prediction model based on data mining and machine learning. We first performed the correlation analysis and recursive feature elimination with cross-validation (RFECV) to provide high-quality feature combinations. Based on this, the Light Gradient Boosting Machine (LightGBM) algorithm was to establish a prediction model with powerful performance. Finally, we verified the validity and superiority of the proposed method via comparison with other prediction models in similar works. After 10-fold cross-validation, the proposed prediction method had the best performance and its explained variance score (EVS), mean absolute error (MAE), mean squared error (MSE), root mean square error (RMSE), median absolute error (MedAE) and R2 were 0.949, 0.028, 0.002, 0.045, 0.015 and 0.948, respectively. It also performed well on test datasets. Therefore, it can accurately and effectively predict the VCPLAT, thereby determining the severity of the condition to provide auxiliary decision-making for doctors in clinical diagnosis and treatment.

2021 ◽  
pp. 0958305X2110449
Author(s):  
Irfan Ullah ◽  
Kai Liu ◽  
Toshiyuki Yamamoto ◽  
Rabia Emhamed Al Mamlook ◽  
Arshad Jamal

The rapid growth of transportation sector and related emissions are attracting the attention of policymakers to ensure environmental sustainability. Therefore, the deriving factors of transport emissions are extremely important to comprehend. The role of electric vehicles is imperative amid rising transport emissions. Electric vehicles pave the way towards a low-carbon economy and sustainable environment. Successful deployment of electric vehicles relies heavily on energy consumption models that can predict energy consumption efficiently and reliably. Improving electric vehicles’ energy consumption efficiency will significantly help to alleviate driver anxiety and provide an essential framework for operation, planning, and management of the charging infrastructure. To tackle the challenge of electric vehicles’ energy consumption prediction, this study aims to employ advanced machine learning models, extreme gradient boosting, and light gradient boosting machine to compare with traditional machine learning models, multiple linear regression, and artificial neural network. Electric vehicles energy consumption data in the analysis were collected in Aichi Prefecture, Japan. To evaluate the performance of the prediction models, three evaluation metrics were used; coefficient of determination ( R2), root mean square error, and mean absolute error. The prediction outcome exhibits that the extreme gradient boosting and light gradient boosting machine provided better and robust results compared to multiple linear regression and artificial neural network. The models based on extreme gradient boosting and light gradient boosting machine yielded higher values of R2, lower mean absolute error, and root mean square error values have proven to be more accurate. However, the results demonstrated that the light gradient boosting machine is outperformed the extreme gradient boosting model. A detailed feature important analysis was carried out to demonstrate the impact and relative influence of different input variables on electric vehicles energy consumption prediction. The results imply that an advanced machine learning model can enhance the prediction performance of electric vehicles energy consumption.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Satoko Hiura ◽  
Shige Koseki ◽  
Kento Koyama

AbstractIn predictive microbiology, statistical models are employed to predict bacterial population behavior in food using environmental factors such as temperature, pH, and water activity. As the amount and complexity of data increase, handling all data with high-dimensional variables becomes a difficult task. We propose a data mining approach to predict bacterial behavior using a database of microbial responses to food environments. Listeria monocytogenes, which is one of pathogens, population growth and inactivation data under 1,007 environmental conditions, including five food categories (beef, culture medium, pork, seafood, and vegetables) and temperatures ranging from 0 to 25 °C, were obtained from the ComBase database (www.combase.cc). We used eXtreme gradient boosting tree, a machine learning algorithm, to predict bacterial population behavior from eight explanatory variables: ‘time’, ‘temperature’, ‘pH’, ‘water activity’, ‘initial cell counts’, ‘whether the viable count is initial cell number’, and two types of categories regarding food. The root mean square error of the observed and predicted values was approximately 1.0 log CFU regardless of food category, and this suggests the possibility of predicting viable bacterial counts in various foods. The data mining approach examined here will enable the prediction of bacterial population behavior in food by identifying hidden patterns within a large amount of data.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jong Ho Kim ◽  
Haewon Kim ◽  
Ji Su Jang ◽  
Sung Mi Hwang ◽  
So Young Lim ◽  
...  

Abstract Background Predicting difficult airway is challengeable in patients with limited airway evaluation. The aim of this study is to develop and validate a model that predicts difficult laryngoscopy by machine learning of neck circumference and thyromental height as predictors that can be used even for patients with limited airway evaluation. Methods Variables for prediction of difficulty laryngoscopy included age, sex, height, weight, body mass index, neck circumference, and thyromental distance. Difficult laryngoscopy was defined as Grade 3 and 4 by the Cormack-Lehane classification. The preanesthesia and anesthesia data of 1677 patients who had undergone general anesthesia at a single center were collected. The data set was randomly stratified into a training set (80%) and a test set (20%), with equal distribution of difficulty laryngoscopy. The training data sets were trained with five algorithms (logistic regression, multilayer perceptron, random forest, extreme gradient boosting, and light gradient boosting machine). The prediction models were validated through a test set. Results The model’s performance using random forest was best (area under receiver operating characteristic curve = 0.79 [95% confidence interval: 0.72–0.86], area under precision-recall curve = 0.32 [95% confidence interval: 0.27–0.37]). Conclusions Machine learning can predict difficult laryngoscopy through a combination of several predictors including neck circumference and thyromental height. The performance of the model can be improved with more data, a new variable and combination of models.


2021 ◽  
Author(s):  
Abdul Muqtadir Khan

Abstract With the advancement in machine learning (ML) applications, some recent research has been conducted to optimize fracturing treatments. There are a variety of models available using various objective functions for optimization and different mathematical techniques. There is a need to extend the ML techniques to optimize the choice of algorithm. For fracturing treatment design, the literature for comparative algorithm performance is sparse. The research predominantly shows that compared to the most commonly used regressors and classifiers, some sort of boosting technique consistently outperforms on model testing and prediction accuracy. A database was constructed for a heterogeneous reservoir. Four widely used boosting algorithms were used on the database to predict the design only from the output of a short injection/falloff test. Feature importance analysis was done on eight output parameters from the falloff analysis, and six were finalized for the model construction. The outputs selected for prediction were fracturing fluid efficiency, proppant mass, maximum proppant concentration, and injection rate. Extreme gradient boost (XGBoost), categorical boost (CatBoost), adaptive boost (AdaBoost), and light gradient boosting machine (LGBM) were the algorithms finalized for the comparative study. The sensitivity was done for a different number of classes (four, five, and six) to establish a balance between accuracy and prediction granularity. The results showed that the best algorithm choice was between XGBoost and CatBoost for the predicted parameters under certain model construction conditions. The accuracy for all outputs for the holdout sets varied between 80 and 92%, showing robust significance for a wider utilization of these models. Data science has contributed to various oil and gas industry domains and has tremendous applications in the stimulation domain. The research and review conducted in this paper add a valuable resource for the user to build digital databases and use the appropriate algorithm without much trial and error. Implementing this model reduced the complexity of the proppant fracturing treatment redesign process, enhanced operational efficiency, and reduced fracture damage by eliminating minifrac steps with crosslinked gel.


2021 ◽  
Author(s):  
Nicolai Ree ◽  
Andreas H. Göller ◽  
Jan H. Jensen

We present RegioML, an atom-based machine learning model for predicting the regioselectivities of electrophilic aromatic substitution reactions. The model relies on CM5 atomic charges computed using semiempirical tight binding (GFN1-xTB) combined with the ensemble decision tree variant light gradient boosting machine (LightGBM). The model is trained and tested on 21,201 bromination reactions with 101K reaction centers, which is split into a training, test, and out-of-sample datasets with 58K, 15K, and 27K reaction centers, respectively. The accuracy is 93% for the test set and 90% for the out-of-sample set, while the precision (the percentage of positive predictions that are correct) is 88% and 80%, respectively. The test-set performance is very similar to the graph-based WLN method developed by Struble et al. (React. Chem. Eng. 2020, 5, 896) though the comparison is complicated by the possibility that some of the test and out-of-sample molecules are used to train WLN. RegioML out-performs our physics-based RegioSQM20 method (J. Cheminform. 2021, 13:10) where the precision is only 75%. Even for the out-of-sample dataset, RegioML slightly outperforms RegioSQM20. The good performance of RegioML and WLN is in large part due to the large datasets available for this type of reaction. However, for reactions where there is little experimental data, physics-based approaches like RegioSQM20 can be used to generate synthetic data for model training. We demonstrate this by showing that the performance of RegioSQM20 can be reproduced by a ML-model trained on RegioSQM20-generated data.


2021 ◽  
Author(s):  
Seong Hwan Kim ◽  
Eun-Tae Jeon ◽  
Sungwook Yu ◽  
Kyungmi O ◽  
Chi Kyung Kim ◽  
...  

Abstract We aimed to develop a novel prediction model for early neurological deterioration (END) based on an interpretable machine learning (ML) algorithm for atrial fibrillation (AF)-related stroke and to evaluate the prediction accuracy and feature importance of ML models. Data from multi-center prospective stroke registries in South Korea were collected. After stepwise data preprocessing, we utilized logistic regression, support vector machine, extreme gradient boosting, light gradient boosting machine (LightGBM), and multilayer perceptron models. We used the Shapley additive explanations (SHAP) method to evaluate feature importance. Of the 3,623 stroke patients, the 2,363 who had arrived at the hospital within 24 hours of symptom onset and had available information regarding END were included. Of these, 318 (13.5%) had END. The LightGBM model showed the highest area under the receiver operating characteristic curve (0.778, 95% CI, 0.726 - 0.830). The feature importance analysis revealed that fasting glucose level and the National Institute of Health Stroke Scale score were the most influential factors. Among ML algorithms, the LightGBM model was particularly useful for predicting END, as it revealed new and diverse predictors. Additionally, the SHAP method can be adjusted to individualize the features’ effects on the predictive power of the model.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
B. A Omodunbi

Diabetes mellitus is a health disorder that occurs when the blood sugar level becomes extremely high due to body resistance in producing the required amount of insulin. The aliment happens to be among the major causes of death in Nigeria and the world at large. This study was carried out to detect diabetes mellitus by developing a hybrid model that comprises of two machine learning model namely Light Gradient Boosting Machine (LGBM) and K-Nearest Neighbor (KNN). This research is aimed at developing a machine learning model for detecting the occurrence of diabetes in patients. The performance metrics employed in evaluating the finding for this study are Receiver Operating Characteristics (ROC) Curve, Five-fold Cross-validation, precision, and accuracy score. The proposed system had an accuracy of 91% and the area under the Receiver Operating Characteristic Curve was 93%. The experimental result shows that the prediction accuracy of the hybrid model is better than traditional machine learning


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2927
Author(s):  
Jiyeong Hong ◽  
Seoro Lee ◽  
Joo Hyun Bae ◽  
Jimin Lee ◽  
Woon Ji Park ◽  
...  

Predicting dam inflow is necessary for effective water management. This study created machine learning algorithms to predict the amount of inflow into the Soyang River Dam in South Korea, using weather and dam inflow data for 40 years. A total of six algorithms were used, as follows: decision tree (DT), multilayer perceptron (MLP), random forest (RF), gradient boosting (GB), recurrent neural network–long short-term memory (RNN–LSTM), and convolutional neural network–LSTM (CNN–LSTM). Among these models, the multilayer perceptron model showed the best results in predicting dam inflow, with the Nash–Sutcliffe efficiency (NSE) value of 0.812, root mean squared errors (RMSE) of 77.218 m3/s, mean absolute error (MAE) of 29.034 m3/s, correlation coefficient (R) of 0.924, and determination coefficient (R2) of 0.817. However, when the amount of dam inflow is below 100 m3/s, the ensemble models (random forest and gradient boosting models) performed better than MLP for the prediction of dam inflow. Therefore, two combined machine learning (CombML) models (RF_MLP and GB_MLP) were developed for the prediction of the dam inflow using the ensemble methods (RF and GB) at precipitation below 16 mm, and the MLP at precipitation above 16 mm. The precipitation of 16 mm is the average daily precipitation at the inflow of 100 m3/s or more. The results show the accuracy verification results of NSE 0.857, RMSE 68.417 m3/s, MAE 18.063 m3/s, R 0.927, and R2 0.859 in RF_MLP, and NSE 0.829, RMSE 73.918 m3/s, MAE 18.093 m3/s, R 0.912, and R2 0.831 in GB_MLP, which infers that the combination of the models predicts the dam inflow the most accurately. CombML algorithms showed that it is possible to predict inflow through inflow learning, considering flow characteristics such as flow regimes, by combining several machine learning algorithms.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Daichi Shigemizu ◽  
Shintaro Akiyama ◽  
Yuya Asanomi ◽  
Keith A. Boroevich ◽  
Alok Sharma ◽  
...  

Abstract Background Dementia with Lewy bodies (DLB) is the second most common subtype of neurodegenerative dementia in humans following Alzheimer’s disease (AD). Present clinical diagnosis of DLB has high specificity and low sensitivity and finding potential biomarkers of prodromal DLB is still challenging. MicroRNAs (miRNAs) have recently received a lot of attention as a source of novel biomarkers. Methods In this study, using serum miRNA expression of 478 Japanese individuals, we investigated potential miRNA biomarkers and constructed an optimal risk prediction model based on several machine learning methods: penalized regression, random forest, support vector machine, and gradient boosting decision tree. Results The final risk prediction model, constructed via a gradient boosting decision tree using 180 miRNAs and two clinical features, achieved an accuracy of 0.829 on an independent test set. We further predicted candidate target genes from the miRNAs. Gene set enrichment analysis of the miRNA target genes revealed 6 functional genes included in the DHA signaling pathway associated with DLB pathology. Two of them were further supported by gene-based association studies using a large number of single nucleotide polymorphism markers (BCL2L1: P = 0.012, PIK3R2: P = 0.021). Conclusions Our proposed prediction model provides an effective tool for DLB classification. Also, a gene-based association test of rare variants revealed that BCL2L1 and PIK3R2 were statistically significantly associated with DLB.


Sign in / Sign up

Export Citation Format

Share Document