scholarly journals Astilbe and Coneflower Growth as Affected by Fertilizer Rate and Substrate Volumetric Water Content

Horticulturae ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 52
Author(s):  
Amanda Bayer

Improved irrigation and fertilization practices, such as reduced applications, are needed to improve the sustainability of container plant production. The objective of this study was to assess growth of Visions astilbe (Astilbe chinensis ‘Visions’) and Mellow Yellow coneflower (Echinacea purpurea ‘Mellow Yellow’) grown at two controlled-release fertilizer (CRF) rates (100% or 50% of the medium bag rate) and two volumetric water contents (VWC; 40% and 18%). For coneflower, there were no significant treatment effects for height, growth index, shoot dry weight, or leaf size. There was a significant VWC effect on number of flowers with the 40% treatment having more flowers (5.6) per plant than the 18% treatment (2.7). Shoot dry weight, growth index, and leaf size of astilbe were greater for the 40% VWC treatment than the 18% VWC treatment with no fertilizer rate effect. Astilbe height and number of flowers was not significant. These results indicate that there is a species-specific effect of VWC on growth whereas reduced fertilizer applications are possible for both species without impacting growth. Although a substrate VWC of 18% is likely too low to produce salable plants, a VWC below 40% can potentially be used to support adequate growth.

2015 ◽  
Vol 25 (3) ◽  
pp. 370-379 ◽  
Author(s):  
Mary Jane Clark ◽  
Youbin Zheng

The objective of this study was to determine the optimal controlled-release fertilizer (CRF) application rates or ranges for the production of five 2-gal nursery crops. Plants were evaluated following fertilization with 19N–2.6P–10.8K plus minors, 8–9 month CRF incorporated at 0.15, 0.45, 0.75, 1.05, 1.35, and 1.65 kg·m−3 nitrogen (N). The five crops tested were bigleaf hydrangea (Hydrangea macrophylla), ‘Green Velvet’ boxwood (Buxus ×), ‘Magic Carpet’ spirea (Spiraea japonica), ‘Palace Purple’ coral bells (Heuchera micrantha), and rose of sharon (Hibiscus syriacus). Most plant growth characteristics (i.e., growth index, plant height, leaf area, and shoot dry weight) were greater in high vs. low CRF treatments at the final harvest. Low CRF rates negatively impacted overall appearance and marketability. The species-specific CRF range recommendations were 1.05 to 1.35 kg·m−3 N for rose of sharon, 0.75 to 1.05 kg·m−3 N for ‘Magic Carpet’ spirea, and 0.75 to 1.35 kg·m−3 N for bigleaf hydrangea and ‘Green Velvet’ boxwood, whereas the recommended CRF rate for ‘Palace Purple’ coral bells was 0.75 kg·m−3 N. Overall, species-specific CRF application rates can be used to manage growth and quality of containerized nursery crops during production in a temperate climate.


HortScience ◽  
2015 ◽  
Vol 50 (1) ◽  
pp. 78-84 ◽  
Author(s):  
Amanda Bayer ◽  
John Ruter ◽  
Marc W. van Iersel

Sustainable use of water resources is of increasing importance in container plant production as a result of decreasing water availability and an increasing number of laws and regulations regarding nursery runoff. Soil moisture sensor-controlled, automated irrigation can be used to irrigate when substrate volumetric water content (θ) drops below a threshold, improving irrigation efficiency by applying water only as needed. We compared growth of two Gardenia jasminoides cultivars, slow-growing and challenging ‘Radicans’ and easier, fast-growing ‘August Beauty’, at various θ thresholds. Our objective was to determine how irrigation can be applied more efficiently without negatively affecting plant quality, allowing for cultivar-specific guidelines. Soil moisture sensor-controlled, automated irrigation was used to maintain θ thresholds of 0.20, 0.30, 0.40, or 0.50 m3·m−3. Growth of both cultivars was related to θ threshold, and patterns of growth were similar in both Watkinsville and Tifton, GA. High mortality was observed at the 0.20-m3·m−3 threshold with poor root establishment resulting from the low irrigation volume. Height, width, shoot dry weight, root dry weight, and leaf size were greater for the 0.40 and 0.50 m3·m−3 than the 0.20 and 0.30-m3·m−3 θ thresholds. Irrigation volume increased with increasing θ thresholds for both cultivars. For ‘August Beauty’, cumulative irrigation volume ranged from 0.96 to 63.21 L/plant in Tifton and 1.89 to 87.9 L/plant in Watkinsville. For ‘Radicans’, cumulative irrigation volume ranged from 1.32 to 126 L/plant in Tifton and from 1.38 to 261 L/plant in Watkinsville. There was a large irrigation volume difference between the 0.40 and 0.50-m3·m−3 θ thresholds with little additional growth, suggesting that the additional irrigation applied led to overirrigation and leaching. Bud and flower number of ‘Radicans’ were greatest for the 0.40-m3·m−3 θ threshold, indicating that overirrigation can reduce flowering. The results of this study show that growth of the different G. jasminoides cultivars responded similarly to θ threshold at both locations. Similarities in growth and differences in irrigation volume at the 0.40 and 0.50-m3·m−3 θ thresholds show that more efficient irrigation can be used without negatively impacting growth.


2015 ◽  
Vol 95 (2) ◽  
pp. 251-262 ◽  
Author(s):  
Mary Jane Clark ◽  
Youbin Zheng

Clark, M. J. and Zheng, Y. 2015. Species-specific fertilization can benefit container nursery crop production. Can. J. Plant Sci. 95: 251–262. To determine the responses of six container-grown shrub species to different controlled-release fertilizer (CRF) application rates, plant growth and root-zone traits were evaluated following fertilization with Polyon® 16–6–13, 5–6 month CRF incorporated at 0.60, 0.89, 1.19, 1.49 and 1.79 kg m−3 N. The six species tested at a southwestern Ontario, Canada, nursery were Cornus stolonifera ‘Flaviramea’ (yellow-twig dogwood), Euonymus alatus ‘Compactus’ (dwarf winged euonymus), Hydrangea paniculata ‘Grandiflora’ (Pee Gee hydrangea), Physocarpus opulifolius ‘Nugget’ (Nugget ninebark), Spiraea japonica ‘Magic Carpet’ (Magic Carpet spirea), Weigela florida ‘Alexandra’ (Wine and Roses weigela). Different species responded differently to the CRF rates applied. For the majority of species at the final harvest, growth index, plant height, canopy area, leaf area and above-ground dry weight were greater in high vs. low CRF rates; however, different species had different optimal CRF application rates or ranges: 1.49 kg m−3 N for Hydrangea and Spiraea, 1.19 kg m−3 N for Weigela, 1.19 to 1.49 kg m−3 N for Cornus and Physocarpus, and ≤0.60 kg m−3 N for Euonymus. Based on these species-specific optimal fertilizer rates or ranges, growers can group plant species with similar fertilizer demands, thereby reducing fertilizer waste and maximizing plant production.


2015 ◽  
Vol 33 (2) ◽  
pp. 66-75 ◽  
Author(s):  
Mary Jane Clark ◽  
Youbin Zheng

To determine the response of container-grown shrubs to controlled-release fertilizer (CRF) rate when grown in a temperate climate, Polyon® 19–04–10 + Minors, an 8–9 month CRF, was incorporated into growing substrates for ‘Gro-Low’ fragrant sumac (Rhus aromatica Aiton), ‘Goldmound’ spirea (Spiraea × bumalda Burv.) and ‘Bloomerang’® purple lilac (Syringa × ‘Penda’) transplants. Also, a 15–06–11 + Micros, a 10–12 month CRF, was incorporated into growing substrates for ‘Green Mound’ boxwood (Buxus × ‘Green Mound’), ‘Runyan’ yew (Taxus × media) and ‘Emerald’ white-cedar (arborvitae) (Thuja occidentalis L.) transplants, at six rates (0.15, 0.45, 0.75, 1.05, 1.35 and 1.65 kg·m−3 N; 0.25, 0.76, 1.26, 1.77, 2.28 and 2.78 lb·yd−3 N). We observed greater growth index, leaf area, and shoot dry weight at high vs. low CRF rates for the majority of species. Nutrient deficiency symptoms such as light green leaves were observed at low CRF rates for some species, including fragrant sumac, lilac and white-cedar. Optimal species-specific CRF application rates were 1.05 kg·m−3 N (1.77 lb·yd−3 N) for lilac and yew and 0.45 kg·m−3 N (0.76 lb·yd−3 N) for boxwood and white-cedar, while the optimal CRF ranges were 0.75 to 1.35 kg·m−3 N (1.26 to 2.28 lb·yd−3 N) for fragrant sumac and 0.75 to 1.05 kg·m−3 N (1.26 to 1.77 lb·yd−3 N) for spirea. Adjusting CRF application rates based on plant response may provide nursery growers with an efficient tool for managing nursery crop growth and production timing in the temperate climate.


HortScience ◽  
2015 ◽  
Vol 50 (4) ◽  
pp. 582-589 ◽  
Author(s):  
Peter Alem ◽  
Paul A. Thomas ◽  
Marc W. van Iersel

Rising concerns over environmental impacts of excessive water and fertilizer use in the horticultural industry necessitate more efficient use of water and nutrients. Both substrate volumetric water content (θ) and fertilizer affect plant growth, but their interactive effect is poorly understood. The objective of this study was to determine the optimal fertilizer rates for petunia (Petunia ×hybrida) ‘Dreams White’ grown at different θ levels. Petunia seedlings were grown at four levels of θ (0.10, 0.20, 0.30, and 0.40 m3·m−3) with eight different rates of controlled-release fertilizer (CRF) (Osmocote 14-14-14; 14N–6.1P–11.6K; rates of 0 to 2.5 g/plant, equivalent to 0 to 6.25 kg·m−3 substrate). Shoot dry weight increased as the CRF rate increased from 0 to 1.67 g/plant but decreased again at even higher CRF rates. The effect of CRF rate on growth was more pronounced at higher θ. Leaf size doubled as the θ thresholds increased from 0.10 to 0.40 m3·m−3. Flowering was reduced by a combination of high CRF rates (greater than 0.63 g/plant) and high θ (0.30 and 0.40 m3·m−3), indicating that optimal conditions for vegetative growth are different from those for maximal flowering. These results suggest that without leaching, high-quality petunias can be grown with lower CRF rates than commercially recommended rates.


HortScience ◽  
2010 ◽  
Vol 45 (9) ◽  
pp. 1373-1377 ◽  
Author(s):  
Guihong Bi ◽  
William B. Evans ◽  
James M. Spiers ◽  
Anthony L. Witcher

Two experiments were conducted to evaluate the growth and flowering responses of greenhouse-grown French marigold (Tagetes patula L. ‘Janie Deep Orange’) to two non-composted broiler chicken litter-based organic fertilizers, 4-2-2 and 3-3-3, and one commonly used synthetic controlled-release fertilizer, 14-14-14. In both experiments, fertilizer 4-2-2 was applied at four rates of 1%, 2%, 4%, and 6% (by volume); 3-3-3 was applied at four rates of 1.34%, 2.67%, 5.34%, and 8.0% (by volume); and 14-14-14 was applied at rates of 0.99, 1.98, 3.96, and 5.94 kg·m−3. In general, substrate containing different rates and types of fertilizers had a pH within the recommended range of 5.0 to 6.5. Electrical conductivity (EC) was similar among substrates containing different rates of 14-14-14; however, EC increased with increasing fertilizer rate for substrates containing 4-2-2 and 3-3-3. Substrate EC within each treatment was generally higher earlier in the experiment. For the fertilizer rates used in these two experiments, increasing 14-14-14 fertilizer rate increased plant growth and flowering performance. However, low to intermediate rates of 4-2-2 and 3-3-3 in general produced the highest plant growth index, shoot dry weight, number of flowers per plant, total flower dry weight, and root rating. Plants grown at high rates of 4-2-2 and 3-3-3 showed symptoms associated with excessive fertilization. Plant tissue nitrogen (N), phosphorus (P), and potassium (K) concentrations increased linearly or quadratically with increasing fertilizer rates for all three fertilizers. In general, plants receiving 4-2-2 and 3-3-3 had higher concentrations of N, P, and K than plants receiving 14-14-14. Results from this study indicated that broiler litter-based 4-2-2 and 3-3-3 have the potential to be used as organic fertilizer sources for container production of marigolds in greenhouses. However, growers need to be cautious with the rate applied. Because different crops may respond differently to these natural fertilizers, it is important for growers to test any new fertilizers before incorporating them into their production practices.


2015 ◽  
Vol 33 (2) ◽  
pp. 53-57 ◽  
Author(s):  
G.J. Keever ◽  
J.R. Kessler ◽  
G.B. Fain ◽  
D.C. Mitchell

A study was conducted to determine how seedling development stage at transplanting from plug flats into small pots affected growth and flowering of two commonly grown bedding plants. Seeds of Showstar® medallion flower and ‘Las Vegas Pink’ globe amaranth were sown in 392-cell flats on five dates for each of two experimental runs before transplanting into 8.9 cm (3.5 in) cubic pots. At transplanting of both species, plant height, node count and shoot dry weight increased as days from sowing to transplanting increased and there was no visible cessation in shoot growth due to root restriction. Time to first flower from transplanting decreased linearly with both species in both runs, except with medallion flower in the second run, as time from sowing to transplanting increased. In contrast, time to flower of both species from sowing increased linearly as time from sowing to transplanting increased. However, the magnitude of the increase or decrease in time to flower differed between the two runs indicating that other factors, most likely light intensity and duration, besides node counts were affecting time to flower. Globe amaranth height and growth index and medallion flower growth index at first flower decreased as time from sowing to transplanting increased, whereas medallion flower height was not affected by time from sowing to transplanting.


2017 ◽  
Vol 27 (4) ◽  
pp. 472-481 ◽  
Author(s):  
Nicholas J. Flax ◽  
Christopher J. Currey ◽  
James A. Schrader ◽  
David Grewell ◽  
William R. Graves

Our objectives were to quantify the growth and quality of herbaceous annuals grown in different types of bioplastic-based biocontainers in commercial greenhouses and quantify producer interest in using these types of biocontainers in their production systems. Seedlings of ‘Serena White’ angelonia (Angelonia angustifolia) and ‘Maverick Red’ zonal geranium (Pelargonium ×hortorum) that had been transplanted into nine different (4.5-inch diameter) container types [eight bioplastic-based biocontainers and a petroleum-based plastic (PP) (control)] were grown at six commercial greenhouses in the upper midwestern United States. Plants were grown alongside other bedding annuals in each commercial greenhouse, and producers employed their standard crop culture practices. Data were collected to characterize growth when most plants were flowering. Questionnaires to quantify producer perceptions and interest in using bioplastic-based biocontainers, interest in different container attributes, and satisfaction were administered at select times during the experiment. Container type interacted with greenhouse to affect angelonia growth index (GI) and shoot dry weight (SDW), as well as shoot, root, and container ratings. Container type or greenhouse affected geranium GI and shoot rating, and their interaction affected SDW, and root and container ratings. These results indicate that commercial producers can grow herbaceous annuals in a range of bioplastic-based biocontainers with few or no changes to their crop culture practices.


1991 ◽  
Vol 69 (1) ◽  
pp. 226-228 ◽  
Author(s):  
Roy Turkington ◽  
Elena Klein

Cuttings of Trifolium repens were grown in pots without neighbours. When individual interconnected stolons from these cuttings were directed into adjacent pots so that daughter ramets were growing with different grass neighbours, these neighbouring grasses had dissimilar effects on leaf number, leaf size, percent branching of nodes, stolon length, and shoot dry weight. When the T. repens cuttings were grown in pots with neighbours, the effects of different grass neighbours on subsequent growth of stolons and ramets evened out. Key words: integration, clone, ramet, neighbour effects, Trifolium repens.


1994 ◽  
Vol 12 (3) ◽  
pp. 167-169
Author(s):  
G.J. Keever ◽  
C.H. Gilliam ◽  
D.J. Eakes

Abstract Ilex x meserveae ‘China Girl’ plants were sprayed with a single application of different rates of Cutless (flurprimidol) during container production. Growth index, shoot length and shoot dry weight decreased with increasing rates of Cutless. Growth index of plants treated with 500 ppm Cutless was about 17% less than that of control plants 120 days after treatment, but were similar after the spring flush the following year. Growth inhibition persisted for at least two growing seasons when plants were treated with rates of 1500 to 2500 ppm; foliage of these plants was smaller and more cupped than that of control plants. Treated plants were noticeably more compact and uniform, and foliage was darker green than that of control plants.


Sign in / Sign up

Export Citation Format

Share Document