scholarly journals Influence of Solution Combination for Postharvest Treatment Stage on Vase Life of Cut Hydrangea Flowers (Hydrangea macrophylla cv. ‘Verena’)

Horticulturae ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 406
Author(s):  
Haejo Yang ◽  
Sooyeon Lim ◽  
Ji-Hyun Lee ◽  
Ji-Weon Choi ◽  
Il-Sheob Shin

Vase life is one of the most important factors that determines the marketability of cut flowers and is greatly affected by the water balance. The vase life of cut hydrangea flowers varies greatly depending on the postharvest solution management. Therefore, this study investigated the vase life of freshly harvested hydrangea (Hydrangea macrophylla ‘Verena’) according to the three types of preservative solutions (tap water (TW), 1% Chrysal Professional Ⅲ (CPⅢ), 2% sucrose + 250 mg/L 8-hydroxquinoline + 100 mg/L citric acid (SHQC)) and the combination solutions (pretreatment; TW, 0.1% Chrysal RVB (RVB), Floralife Quick Dip (FQ), transport; TW, CPⅢ, Floralife Clear (FC), preservative; CPⅢ, FC) for each distribution stage (pretreatment–transport–consumer). In the preservative comparison experiment, compared with the control, SHQC and CPⅢ significantly increased the vase life in 2019 (0.7 days, 3.4 days) and 2020 (1.4 days, 3.1 days), respectively. In the comparative experiment, by solution combination, the group (RVB, FQ) using the pretreatment significantly extended the vase life by 5.9 days and 4.6 days compared with the TW. These results confirm the importance of preservative solutions and pretreatment, suggesting that appropriate pretreatment and preservatives should be used to improve the marketability of cut hydrangea flowers.

Author(s):  
Haejo Yang ◽  
Sooyeon Lim ◽  
Ji Hyun Lee ◽  
Ji Weon Choi ◽  
Il Sheob Shin

Vase life is one of the most important factors that determine the marketability of cut flowers and is greatly affected by the water balance. In recent years, cut hydrangea flowers are increasingly consumed as decorations for various events. However, the vase life of cut hydrangea flowers varies greatly depending on the postharvest solution management. Therefore, this study investigated the vase life, solution uptake, water balance, and relative fresh weight of freshly harvested hydrangea (Hydrangea macrophylla ‘Verena’) according to the three types of holding solutions (tap water, 1% chrysal professional Ⅲ (CPⅢ), 2% sucrose + 250 mg/L 8-hydroxquinoline + 100 mg/L citric acid (SHQC)) and the combination solutions (pretreatment; tap water, 0.1% chrysal RVB (RVB), floralife quickdip (FQ), transport; tap water, CPⅢ, floralife clear (FC), preservatives; CPⅢ, FC) for each distribution stage (pretreatment-transport-consumer). In the preservative comparison experiment, compared with the control, CPⅢ treatment and SHQC treatment significantly increased the vase life in 2019 (0.7 days, 3.4 days) and 2020 (1.4 days, 3.1 days), respectively. In the comparative experiment by solution combination, the group (RVB, FQ) using the pretreatment significantly extended the vase life by 4.6 days and 5.9 days compared to the tap water treatment. It was also determined that the same treatment increased overall solution uptake, maintained water balance longer, and increased relative fresh weight. These results confirm the importance of holding solutions and pretreatments, suggesting that appropriate pretreatments and preservatives should be used to improve the marketability of cut hydrangea flowers.


2019 ◽  
Vol 50 (Special) ◽  
Author(s):  
Al-Hasnawi & et al.

This experiment was conducted to study the effect of five concentrations of growth regulator of (0, 25 GA3, 50 GA3, 100 Salicylic acid, 150 Salicylic acid) mg.L-1 and three types of preservative solutions on the vase life and water relations for Gladiolus hybrida L. after cut flower. The experiment was conducted as a factorial experiment (3×5) according to Randomized Complete Blocks Design, with three replicates. The results showed that GA3 (50 mg.L-1) significantly excelled in relative fresh weight of 155.33%, absorbed water 59.00 g /flower /day, the lost water 32.99 g /flower /day, water balance 26.01 g /flower /day, vase life 16.96 days, dry weight of flowers 22.89 g, and carbohydrate content in petals 22.34 %, and total carotenoids content in petals 7.84 mg/100 g dry weight. The second solution (5% sucrose + 200 mg.L-1 8.HQS + 200 mg.L-1citric acid) is significantly excelled in most studied traits. The interaction treatment that consisted of (50 mg.L-1 + second solution) is significantly excelled in traits of the relative fresh weight 168.47%, absorbed water 66.32 g/flower /day, the lost water 23.39 g/flower /day, water balance 42.93 g/flower /day, vase life 21.25 days, dry weight of flower 26.11 g, carbohydrate content in petals 20.78% and total carotenoids content in petals 10.06 mg/100g dry weight.


Genetika ◽  
2018 ◽  
Vol 50 (2) ◽  
pp. 495-502
Author(s):  
Emina Mladenovic ◽  
Jelena Cukanovic ◽  
Biljana Bozanic-Tanjga ◽  
Lazar Pavlovic ◽  
Ksenija Hiel ◽  
...  

Efficacy of preservative solutions on vase life of garden roses has not been researched before. Vast variability and morphological characteristics of this group of roses are very important, making them suitable for their use in bouquets, arrangements and vases. This research was carried out to examine the influence of five preservative solutions on vase life of garden rose cut flowers. The aim of research was to determine best preservative solution for prolonging of vase life of garden rose cut flower. The experiment included 8 rose cultivars cultivated for garden use. Each treatment consisted of 10 cut garden roses. The cut garden rose flowers with vase solution containing Al2(SO4)3+ethanol+sucrose register longer vase life and higher values in water uptake. Vase life of flowers held in tap water (control) was lowest (4.38 days). This research backs the assumption that with the use of preservative solutions, garden rose also can be used as a cut flower.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 823A-823
Author(s):  
Su-Jeong Kim* ◽  
Chun-Woo Nam ◽  
Dong-Lim Yoo ◽  
Seung-Yeol Ryu ◽  
Ki-Sun Kim

Iris hollandica `Blue Magic' was treated with deionazed water as a control, 3% sucrose (Suc), 3% sucrose plus 0.4 mm silver thiosulphate (Suc+STS), 3% sucrose plus 200 mg·L-1 8-hydroxyquinoline sulphate (Suc+HQS) and 3% sucrose plus 100 mg·L-1 benzyl amino-purine (Suc+BA) for 4hrs and then transferred to tap water. The vase life treated with Suc+BA was extended 4 days longer than that of control. The treatment Suc+STS or Suc+HQS did not improve vase life. The amounts of water uptake and transpiration by all treatments decreased after harvest, but those values were higher in cut iris treated with Suc+BA than in those with control. Cut flowers treated with by Suc+BA markedly improved water balance, comparing with control which was quickly changed to minus value. Anthocyanin content in petals of cut flower treated with Suc+BA was 3.5 fold higher than that of control. The treatment by Suc+BA delayed discoloration in petals and senescence of cut Iris. Peroxidase (POD) activities of all treatments were reached maximum at 4th day after treatment and decreased thereafter. POD activity was highest when the cut iris was treated with Suc+BA. These results show that the use of Suc+BA is most effective treatment for improving the vase life and quality of cut Iris flowers.


2014 ◽  
Vol 24 (3) ◽  
pp. 384-393 ◽  
Author(s):  
Iftikhar Ahmad ◽  
John M. Dole

Effects of homemade or commercial floral preservatives, applied as 48-hour grower treatment or continuous retailer/consumer application, were studied on cut ‘ABC Blue’ lisianthus (Eustoma grandiflorum), ‘Maryland Plumblossom’ snapdragon (Antirrhinum majus), ‘Mid Cheerful Yellow’ stock (Matthiola incana), and ‘Deep Red’ Benary’s zinnia (Zinnia violacea). Cut stems were placed in solutions containing 500 mL·L−1 lemon/lime soda (soda); 6 mL·L−1 lemon juice plus 20 g·L−1 sugar (lemon juice); 100 mg·L−1 citric acid plus 20 g·L−1 sugar plus 200 mg·L−1 aluminum sulfate (C-AS); 400 mg·L−1 citric acid plus 20 g·L−1 sugar alone (citric acid), or combined with either 0.5 mL·L−1 quaternary ammonium chloride (C-QA), or 0.007 mL·L−1 isothiazolinone (C-IS); 10 mL·L−1 Floralife Clear Professional Flower Food (Floralife); or 10 mL·L−1 Chrysal Clear Professional 2 (Chrysal), dissolved in tap water, which was also used as control without any added compound. Cut stems of lisianthus and stock had longest vase lives (22.1 and 12.7 days, respectively) when placed in C-IS continuously, while snapdragon and zinnia stems had longest vase lives (22.3 and 16.3 days, respectively) when placed in C-QA solution continuously. Continuous use of soda extended vase life of cut lisianthus, snapdragon, and stock stems, but not zinnia, compared with tap water. Citric acid extended the vase life of lisianthus and stock when used continuously and of zinnia when used for 48 hours. Use of C-AS or lemon juice either had no effect or reduced vase life of the tested species, except lemon juice increased zinnia vase life when used as a 48-hour treatment. Stems of lisianthus, stock, and zinnia placed continuously in C-IS, C-QA, or citric acid had high solution uptake. No significant differences were observed for vase life of all tested species with short duration (48 hours) application of solutions, except 48-hour use of citric acid or lemon juice increased zinnia vase life compared with tap water. Overall, continuous vase application of the homemade preservatives resulted in longer vase life extension than 48-hour treatment. Among tested preservative recipes, C-IS, C-QA, soda, or citric acid demonstrated best postharvest performance of tested species. However, recipes containing C-AS or lemon juice had detrimental effects and should not be used for handling cut stems of tested species.


2020 ◽  
Vol 19 (4) ◽  
pp. 95-103
Author(s):  
Soner Kazaz ◽  
Tuğba Kılıç ◽  
Elçin Gözde Ergür Şahin

Vase life is one of the most important factors determining the marketability of cut flowers and influenced by water balance strongly. In recent years, the consumption of hydrangeas as a cut flower has gradually increased. However, the vase life of cut hydrangea flowers is short depends on wilting. Thus, this study was conducted to determine the effects of different treatments [thymol (100, 150 and 200 mgL–1), 8-hydroxyquinoline sulfate (8-HQS) (200 mgL–1)], and their combination with and without 1% sucrose on the vase life, relative fresh weight, daily (solution uptake for 3 days) and total solution uptake of hydrangeas (Hydrangea macrophylla ‘Green Shadow’) harvested freshly. Distilled water was used as the control. Compared to the control, thymol 150 mgL–1 treatment with 1% sucrose significantly increased the vase life of hydrangeas flowers in 5.80 days (from 10.7 to 16.5 days). It was also determined that same treatment increased the total solution uptake and delayed relative fresh weight loss. These results indicated that thymol treatments in combination with sucrose can be used to extend the vase life of cut hydrangea.


2013 ◽  
Vol 5 (3) ◽  
pp. 364-370 ◽  
Author(s):  
Elnaz SOLEIMANY-FARD ◽  
Khodayar HEMMATI ◽  
Ahmad KHALIGHI

Keeping quality and length of vase life are important factors for evaluation of cut flowers quality, for both domestic and export markets. Studding the effect of pre- and post-harvest salicylic acid applications on keeping quality and vase life of cut alstroemeria flowers during vase period is the approach taken. Aqueous solutions of salicylic acid at 0.0 (with distilled water), 1, 2 and 3 mM were sprayed to run-off (approximately 500 mL per plant), about two weeks before flowers harvest. The cut flowers were harvested in the early morning and both of cut flowers treated (sprayed) and untreated were kept in vase solutions containing salicylic acid at 0.0 (with distilled water), 1, 2 and 3 mM. Sucrose at 4% was added to all treatments as a base solution. The changes in relative fresh weight, water uptake, water loss, water balance, total chlorophyll content and vase life were estimated during vase period. The results showed that the relative fresh weight, water uptake, water balance, total chlorophyll content and vase life decreased significantly while the water loss increased significantly during experiment for all treatments. A significant difference between salicylic acid and control treatments in all measured parameters is observed. During vase period, the salicylic acid treatments maintained significantly a more favourable relative fresh weight, water uptake, water balance, total chlorophyll content and supressed significantly water loss, as compared to control treatment. Also, the results showed that the using salicylic acid increased significantly the vase life cut alstroemeria flowers, over control. The highest values of measured parameters were found when plants were treated by pre + post-harvest application of salicylic acid at 3 mM. The result revealed that the quality attributes and vase life of cut alstroemeria flowers were improved by the use of salicylic acid treatment.


2002 ◽  
Vol 42 (5) ◽  
pp. 637
Author(s):  
K.-L. Huang ◽  
L.-J. Liao ◽  
R.-S. Shen ◽  
W.-S. Chen ◽  
Y.-H. Lin

Continuous postharvest treatment of cut rose flowers (Rosa hybrida L. cv. Diana) with maleic acid hydrazide (1.2-dihydro-3,6-pyridazinedione, MH) at 560.5 8-hydroxyquinoline sulfate (HQS) at 388.4 HQS, MH + HQS or sucrose + HQS treatments. The longevity of flowers in MH + sucrose in combination with HQS was extended for 18 days after vase treatments, whereas the longevity of cut flowers was only 4, 6 and 8 days for HQS, MH + HQS and sucrose + HQS, respectively. Cut roses treated with MH + sucrose + HQS in vase solution exhibited greater water uptake and less water loss than those in HQS. The concentrations of various sugars in petals were highest in the sucrose + HQS treatment, and MH + sucrose + HQS > MH + HQS > HQS. Ethylene production was significantly lower in sucrose + HQS or MH + sucrose + HQS treatments in comparison to MH + HQS, or HQS.


2014 ◽  
Vol 22 (2) ◽  
pp. 19-30 ◽  
Author(s):  
Fatemeh Begri ◽  
Ebrahim Hadavi ◽  
Amrollah Nabigol

AbstractIn this study, succinic acid (0, 1 and 2 mM), malic acid (0, 1 and 2 mM), ethanol (0, 2 and 4% v/v), and their mixtures were applied as preservative solutions for cut flowers of spread carnation cv. ‘White Natila’ and their effect on the longevity, the amount of absorbed solution, malondialdehyde and chlorophyll content, cell membrane stability, fresh, and dry weight and on a visual quality was determined. A similarity in the effect of malic acid and succinic acid on dry weight and fresh weight loss were found. Ethanol positively affected most of the studied traits, including the vase life and fresh weight loss. The preservative solution containing 1 mM of malic acid and 4% ethanol resulted in the longest average vase life - 11.1 days compared to 8.9 days in the control. Malic acid showed a significant positive synergism with ethanol that makes it reasonable to combine them in preservative solutions intended to extend the vase life of cut spray carnation.


2015 ◽  
Vol 21 (2) ◽  
pp. 221
Author(s):  
Lucas Cavalcante Da Costa ◽  
Fernanda Ferreira De Araújo ◽  
Teresa Drummond Correia Mendes ◽  
Fernando Luiz Finger

<p>Several experiments reveal that distilled water varies among different laboratories and also does not have a standard composition. Water electrical conductivity (EC) of vase solution is one of the parameters that influence the water uptake by cut flowers. Therefore, the objective of this work was to evaluate the influence of electrical conductivity on water uptake and vase life in cut stems of gladiolus. The stems harvested and kept in distilled water (pH 6.6, EC &lt;0.01dS m-1) and tap water (pH 7.0, EC 0.75 dS m-1) at room temperature. Flowers kept in tap water showed lower fresh weight loss after the second day and higher water uptake during vase life. In a second set of experiments, we verified the limit EC saturation supported by the flower. For this, flowers were placed in individual test tubes containing four different solutions with varying ion concentrations. Solution 2 (EC 0.60 dS m-1) promoted increased vase life and allowed maximum water uptake by the flowers. The results show that the electrical conductivity of vase solution is a major parameter in experiments with vase life of cut gladiolus. The presence of ions in the vase solution increases the overall vase life and improves water uptake of flowers with favorable optimal EC between 0.60 to 0.87 dS m-1.</p>


Sign in / Sign up

Export Citation Format

Share Document