scholarly journals Open-Source Software Application for Hydrogeological Delineation of Potential Groundwater Recharge Zones in the Singida Semi-Arid, Fractured Aquifer, Central Tanzania

Hydrology ◽  
2020 ◽  
Vol 7 (2) ◽  
pp. 28
Author(s):  
Kassim Ramadhani Mussa ◽  
Ibrahimu Chikira Mjemah ◽  
Revocatus Lazaro Machunda

This study attempted to delineate and map potential groundwater recharge zones of the Singida, semi-arid, fractured crystalline basement aquifer using open source remote sensing and GIS software. Various thematic maps such as lithology/hydrogeology, soil, land-cover/use, slope, lineament density, drainage density and rainfall distribution were integrated in QGIS software. Vector input layers were rasterized and resampled using QGIS wrap projection function to make sure that the grid cells are of the same size. Reclassification using SAGA and GRASS reclass algorithms in QGIS was carried out to realign the factor classes in a consistent scale, and reclassification to a scale of 1 to 5 was carried out to harmonize the results. The study identified a number of potential areas for groundwater recharge, groundwater exploration, groundwater development and potential areas for artificial groundwater recharge. Potential groundwater recharge zones for the Singida semi-arid fractured aquifer are restricted to areas with high lineament density, cultivated areas, grassland and flat to gentle slopes. The potential of groundwater recharge is also observed in areas with low drainage density. The delineated zones provide a good understanding of the potential recharge zones, which are a starting point for recharge zone protection. This blended approach can be utilized for carrying out suitability analysis using the weighted overlay analysis approach. Areas designated good and very good are recommended for artificial recharging structures as an alternative technique for enhancing groundwater recharge through rainwater harvesting. This will help to augment groundwater storage in this semi-arid environment.

Author(s):  
Basant Yadav ◽  
Nitesh Patidar ◽  
Anupma Sharma ◽  
Niranjan Panigrahi ◽  
Rakesh Sharma ◽  
...  

In semi-arid and arid regions, groundwater is the primary source for domestic, agricultural, and industrial supply. Scattered and erratic rainfall in these regions makes groundwater recharge more complex. Small-scale rainwater harvesting using both traditional and modern rainwater harvesting structures has been seen as a solution to the deepening groundwater crisis in India. In this study, shallow infiltration ponds locally known as Chaukas were studied to understand their groundwater recharge role and pastureland development. Potential groundwater recharge from these shallow infiltration ponds was estimated using the HYDRUS-1D model, simulating the sub-surface processes in the root zone. Field data collected in the year 2019 is used to calibrate the model for field conditions, while monsoon period data (July-August) of 2020 is used to validate the developed model. The developed model was then used to predict the potential groundwater recharge for the monsoon periods of the year 2019 and 2020.The shallow infiltration ponds allow approximately 5% additional rainfall to be available as potential recharge. The near soil surface moisture also helps develop natural grass cover used for pasture in the early dry periods. Analysis of the vegetation in the past 10 years suggests that these shallow infiltration ponds have converted barren lands into eco-hydrologically productive pasturelands. These Chauka systems have helped in sustainable water resources management in these water stressed regions along with the additional livelihood support through developed pasturelands for animal husbandry. They have potential wide application across India and beyond, as they simply require slightly sloping, barren land above an unconfined aquifer.


2019 ◽  
Vol 48 (1) ◽  
pp. 43-61
Author(s):  
Tanya Vasileva

Groundwater resources on the territory of Bulgaria are unevenly distributed in both spatial and temporal aspects. The effective usage of these valuable assets is of paramount importance, since any over-exploitation would eventually lead to their depletion. Remote sensing data and satellite images have increasingly been used in groundwater exploration and management. An integrated approach was applied in the present study in order to delineate potential groundwater recharge zones on the territory of Bulgaria. Data from various sources were used to prepare different thematic layers. These layers were then transformed into raster data of 1×1 km. Lineament and drainage density maps of the research area were made with the help of GIS technology. In addition, a map was made for the annual total precipitation for the period from 1931 to 1985. DEM (Digital Elevation Model) data on a global scale at 90 m horizontal resolution were used for the slope analysis. A groundwater potential map was produced, which integrates several thematic maps, such as annual rainfall, geology, lineament density, land use, slope, soils, and drainage density. The thematic maps were then converted into a raster graphic format in order to be easily integrated into a GIS platform. The raster maps of these factors were then allocated a fixed score and weight-computed. The weights of those factors contributing to the groundwater recharge were derived by using the following components: geological map, lineament-length density map, land cover data base, soil data base, drainage-length density map, and slope gradient map. Subjective weights were assigned to the respective thematic layers, and they were overlaid in a GIS platform for the identification of potential groundwater recharge zones within the study area. These potential recharge zones were then categorized as being very good, good, moderate, poor, and very poor.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2571
Author(s):  
Alaa Ahmed ◽  
Abdullah Alrajhi ◽  
Abdulaziz S. Alquwaizany

In Australia, water resource management is a major environmental, biological, and socio-economic issue, and will be an essential component of future development. The Hawker Area of the central Flinders Ranges, South Australia suffers from a lack of reliable data to help with water resource management and decision making. The present study aimed to delineate and assess groundwater recharge potential (GWRP) zones using an integration between the remote sensing (RS), geographic information system (GIS), and multi-influencing factors (MIF) approaches in the Hawker Area of the Flinders Ranges, South Australia. Many thematic layers such as lithology, drainage density, slope, and lineament density were established in a GIS environment for the purpose of identifying groundwater recharge potential zones. A knowledge base ranking from 1 to 5 was assigned to each individual thematic layer and its categories, depending on each layer’s importance to groundwater recharge potential zones. All of the thematic layers were integrated to create a combined groundwater potential map of the study area using weighting analysis in ArcGIS software. The groundwater potential zones were categorized into three classes, good, moderate, and low. The resulting zones were verified using available water data and showed a relative consistency with the interpretations. The findings of this study indicated that the most effective groundwater potential recharge zones are located where the lineament density is high, the drainage density is low, and the slope is gentle. The least effective areas for groundwater recharge are underlain by shale and siltstone. The results indicated that there were interrelationships between the groundwater recharge potential factors and the general hydrology characteristics scores of the catchment. MIF analysis using GIS mapping techniques proved to be a very useful tool in the evaluation of hydrogeological systems and could enable decision makers to evaluate, better manage, and protect a hydrogeological system using a single platform.


2021 ◽  
Vol 54 (2D) ◽  
pp. 138-154
Author(s):  
Mohammed S. Shamkhi

Modern technologies are used for watershed management to cope with drought risks in arid and semi-arid regions. The study aimed to conduct a morphometric analysis and know potential groundwater recharge areas in the eastern region of Wasit Province. Remote sensing and GIS data were used for morphometric analysis. The morphometric analysis results adopted the Digital Elevation Model. The results of the analysis were verified by matching the results with what exists in reality. The area of the first basin was 1482.017, as it is the largest basin from the area, with a percent of 51.228% of the total area of all basins. The percentage of first-degree flows reached 83.37% in the first basin, 74.14% percent in the second basin, 75.51% in the third basin, and 75.75% in the fourth basin from all streams in each basin. The bifurcation rate (3.135-4.233), Stream frequency range values (0.543-0.332), drainage texture coarse, low drainage density that ranged between 0.986-1.14 km/km2 elongation ratio ranging from 0.348-0.624 form factor (0.095-0.316). The basins' circularity (0.105-0.238) relief value (951-112) m infiltration number value (0.369-0.535). All basins have a longitudinal shape and lead to the formation of floods and rapid currents, which exposes the region to rapid seasonal floods and the creation of flash floods that cause soil erosion and analyses the drainage intensity results. It was low, and this is an indication that the ground has high permeability. The flow frequency results indicate that the area is semi-arid and exposed to small amounts of rain and coarse drainage texture by comparing the result parameters from morphometric analysis results for each basin. The potential recharge areas of groundwater in the study area can be known, n as the analysis results showed that recharge potential occurs in all basins. The highest groundwater recharge is possible in the third basin and the lowest in the first basin. Morphometric analysis was performed by ARC-GIS(Arc-map10.4).


Sign in / Sign up

Export Citation Format

Share Document