scholarly journals Assessment of Groundwater Recharge Potential Depending on Morphologic Analysis in East of Wasit, Southeastern Iraq

2021 ◽  
Vol 54 (2D) ◽  
pp. 138-154
Author(s):  
Mohammed S. Shamkhi

Modern technologies are used for watershed management to cope with drought risks in arid and semi-arid regions. The study aimed to conduct a morphometric analysis and know potential groundwater recharge areas in the eastern region of Wasit Province. Remote sensing and GIS data were used for morphometric analysis. The morphometric analysis results adopted the Digital Elevation Model. The results of the analysis were verified by matching the results with what exists in reality. The area of the first basin was 1482.017, as it is the largest basin from the area, with a percent of 51.228% of the total area of all basins. The percentage of first-degree flows reached 83.37% in the first basin, 74.14% percent in the second basin, 75.51% in the third basin, and 75.75% in the fourth basin from all streams in each basin. The bifurcation rate (3.135-4.233), Stream frequency range values (0.543-0.332), drainage texture coarse, low drainage density that ranged between 0.986-1.14 km/km2 elongation ratio ranging from 0.348-0.624 form factor (0.095-0.316). The basins' circularity (0.105-0.238) relief value (951-112) m infiltration number value (0.369-0.535). All basins have a longitudinal shape and lead to the formation of floods and rapid currents, which exposes the region to rapid seasonal floods and the creation of flash floods that cause soil erosion and analyses the drainage intensity results. It was low, and this is an indication that the ground has high permeability. The flow frequency results indicate that the area is semi-arid and exposed to small amounts of rain and coarse drainage texture by comparing the result parameters from morphometric analysis results for each basin. The potential recharge areas of groundwater in the study area can be known, n as the analysis results showed that recharge potential occurs in all basins. The highest groundwater recharge is possible in the third basin and the lowest in the first basin. Morphometric analysis was performed by ARC-GIS(Arc-map10.4).

Author(s):  
Varsha Mandale ◽  
Ravindra Bansod

Remote sensing and geographic information system (GIS) are two of the most important tools used to evaluate the morphometric characteristics of watersheds, as morphometric analysis of river basins using conventional methods, is very time to consume, laborious and cumbersome. In this study, the morphometric characteristics of the Adula watershed were calculated using ESRI- ArcGIS. The areal extent of the Adula watershed varies between 19°32’40” N to 19°43’2” N latitude and 74°10’15” E to 74°48’18” E longitude. The topographic sheets obtained from the survey of India on a scale of 1:50000 and the SRTM (Spectral Radar Topographic Mission) Digital Elevation Model of 30 m resolution, were used for watershed delineation and deriving the linear (stream order, stream number, bifurcation ratio), aerial (basin area, basin perimeter, drainage density, form factor, stream frequency, and circulatory ratio), relief (height of  outlet of watershed, basin relief, maximum height of watershed, total basin relief, absolute relief, relief ratio, ruggedness number) aspects. bifurcation ratio for varies from 3.0 to 8.33, indicating the elongated shape of the watershed. Drainage density factor values were 4.43 km/km2 indicating high drainage densities and 0.132 indicating an elongated basin with lower peaks respectively. Ruggedness number was 3.78 showing a dendritic and radial pattern with drainage texture. Therefore this morphometric analysis using geo-processing techniques employed in this study will assist in planning and decision making in the watershed development and management.


2014 ◽  
Vol 6 (2) ◽  
pp. 442-450 ◽  
Author(s):  
Vishal K. Ingle ◽  
A. K. Mishra ◽  
A. Sarangi ◽  
D. K. Singh ◽  
V. K. Seghal

The study area Tapi River catchment covers 63,922.91 Sq.Km comprising of 5 five Sub-catchments: Purna river catchment (18,473.6 sq.km) Upper Tapi catchment (10,530.3 sq. km), Middle Tapi catchment (4,997.3 sq km), Girna river catchment (10,176.9 sq.km) and lower Tapi catchment (19,282.5 sq.km.). The drainage network of 5 Sub-catchments was delineated using remote sensing data. The morphometric analysis of 5 Sub-catchments has been carried out using GIS softwares – ArcMap. The drainage network showed that the terrain exhibits dendritic to sub-dendritic drainage pattern. Stream orders ranged from sixth to seventh order. Drainage density varied between 0.39 and 0.43km/ km2and had very coarse to coarse drainage texture. The relief ratio ranged from 0.003 to 0.007. The mean bifurcation ratio varied from 4.24 to 6.10 and falls under normal basin category. The elongation ratio showed that all catchment elongated pattern. Thus, the remote sensing techniques proved to be a competent tool in morphometric analysis.


Author(s):  
V. A. Kotinas

The present study aims to model flash flood risk in small coastal watersheds in areas that are characterized by Mediterranean climate through extensive morphometric analysis which can prove invaluable for the investigation of flood risk, in ungauged watersheds, where flash floods are frequent. The available topographic data (EU-DEM) are analyzed through Geographic Information Systems (GIS) to produce all the secondary variables that are necessary for this morphometric analysis. Watershed prioritization techniques that are applied on geomorphological variables have proven to be an effective way of estimating the relative flash flood risk in a sub-watershed level. A series of morphometric parameters are used (bifurcation ratio, drainage frequency, drainage density, drainage texture, length of overland flow, circularity ratio, form factor, elongation ratio) which have an effect on flood risk. In small watersheds, with intermittent runoff, this effect can be different than in larger watersheds, so our methodology differs significantly from the methodology other researchers use. The compound factor is calculated by aggregating the assigned ranks of these morphometric indices and the sub-watersheds are prioritized according to their flash flood risk. The study area is located in the island of Samos, in Eastern Greece, where flood events are usual and pose a risk to villages and infrastructure around the island. The selected watershed (Imvrasos river) is divided into several sub-watersheds (W-1 to W-8) and a series of morphometric indices are calculated and evaluated through statistical procedures and by applying prioritization techniques, in order to locate the sub-basins that have the highest risk to flash floods. Sub-watersheds W-2 and W-3 (on the southern part of Imvrasos area) show the highest prioritization values, and should be prioritized for better watershed management planning.


2021 ◽  
Vol 58 (03) ◽  
pp. 286-299
Author(s):  
Mahesh Chand Singh ◽  
Rohit Singh ◽  
Abrar Yousuf ◽  
Vishnu Prasad

The present study examined 35 morphometric parameters related to stream/drainage network, catchment geometry, and relief aspects for hydrological characterization of the Thana Dam catchment using geospatial tools and techniques. The dam catchment was delineated using the high-resolution Advanced Land Observing Satellite Phased Array type L-band Synthetic Aperture Radar (ALOS PALSAR) Digital Elevation Model (DEM) data in ArcGIS 10.4.1 software using the Arc Hydro tools. The catchment is comprised of 4th order stream, obtained using a stream threshold value of 100 m length. The lower values of elongation ratio (0.61), circularity ratio (0.22), and form factor (0.29) indicated higher soil erosion potential, mainly due to their inverse relationship with land erodibility. Moreover, the higher values of stream frequency (15.7), drainage density (>5.0), drainage texture (7.48 km-1), and mean bifurcation ratio (4.08-6.33) indicated higher runoff potential, which would intensify the soil erosion, mainly due to their direct relationship with erodibility. Bifurcation ratio, elongation ratio, circulatory ratio, form factor, altogether indicated an elongated shape of the catchment with a fine drainage texture. The higher values of bifurcation ratio and texture ratio of the catchment also indicated severe overland flow (low infiltration rate) with a limited scope for groundwater recharge in the area, which in turn might significantly encourage the soil erosion. Overall, it was concluded that the catchment has a huge runoff potential resulting in high soil erosion due to its fine texture, impermeable subsurface material, steep slope, low infiltration rate, limited vegetation, longer duration of overland flow, and higher surface runoff. The morphometric analysis was found to be suitable for identifying catchment shape and the factors affecting hydrologic conditions and erodibility of the catchment. Thus, Geo-informatics based morphometric analysis of a reservoir catchment can be useful to study the erosion potential in relation to hydrologic (rainfall-runoff relationship) and other related land characteristics (e.g., relief, slope, infiltration rate, etc.).


Hydrology ◽  
2020 ◽  
Vol 7 (2) ◽  
pp. 28
Author(s):  
Kassim Ramadhani Mussa ◽  
Ibrahimu Chikira Mjemah ◽  
Revocatus Lazaro Machunda

This study attempted to delineate and map potential groundwater recharge zones of the Singida, semi-arid, fractured crystalline basement aquifer using open source remote sensing and GIS software. Various thematic maps such as lithology/hydrogeology, soil, land-cover/use, slope, lineament density, drainage density and rainfall distribution were integrated in QGIS software. Vector input layers were rasterized and resampled using QGIS wrap projection function to make sure that the grid cells are of the same size. Reclassification using SAGA and GRASS reclass algorithms in QGIS was carried out to realign the factor classes in a consistent scale, and reclassification to a scale of 1 to 5 was carried out to harmonize the results. The study identified a number of potential areas for groundwater recharge, groundwater exploration, groundwater development and potential areas for artificial groundwater recharge. Potential groundwater recharge zones for the Singida semi-arid fractured aquifer are restricted to areas with high lineament density, cultivated areas, grassland and flat to gentle slopes. The potential of groundwater recharge is also observed in areas with low drainage density. The delineated zones provide a good understanding of the potential recharge zones, which are a starting point for recharge zone protection. This blended approach can be utilized for carrying out suitability analysis using the weighted overlay analysis approach. Areas designated good and very good are recommended for artificial recharging structures as an alternative technique for enhancing groundwater recharge through rainwater harvesting. This will help to augment groundwater storage in this semi-arid environment.


2016 ◽  
Vol 24 (1) ◽  
pp. 6-16 ◽  
Author(s):  
Adebayo Wahab Salami ◽  
Oseni Taiwo Amoo ◽  
Joshiah Adetayo Adeyemo ◽  
Abdulrasaq Apalando Mohammed ◽  
Adeniyi Ganiyu Adeogun

AbstractThis study utilized Spatial Information Technology (SIT) such as Remote Sensing (RS), a Geographical Information System (GIS), the Global Positioning System (GPS) and a high-resolution Digital Elevation Model (DEM) for a morphometrical analysis of five sub-basins within the Lower Niger River Basin, Nigeria. Morpho-metrical parameters, such as the total relief, relative relief, relief ratio, ruggedness number, texture ratio, elongation ratio, circularity ratio, form factor ratio, drainage density, stream frequency, sinuosity factor and bifurcation ratio, have been computed and analyzed. The study revealed that the contribution of the morphometric parameters to flooding suggest catchment No. 1 has the least concentration time and the highest runoff depth. Catchment No. 4 has the highest circularity ratio (0.35) as the most hazardous site where floods could reach a great volume over a small area.


2020 ◽  
Vol 3 (3) ◽  
Author(s):  
Shobha Shrestha

The larger population in the middle mountain region of Nepal is dependenton spring for domestic water use. Availability and flow regularity ofsprings rely on groundwater recharge (GWR) potential which is attributedto various natural and human factors. The present study is an attempt toexplore the GWR potential using GIS and Remote sensing (RS) methodin two watersheds of the far western middle mountains of Nepal. Spatialanalysis is carried out using a weighted overlay analysis of six factorsnamely, slope, lithology, lineament, drainage density, rainfall, and landcover/ land use. The result shows that only 16 percent of the total watershed area is under a very high recharge potential zone while 31 percent area falls under very low recharge potential. It is found that the distribution of existing spring sources is random concerning GWR potential. Water stress in Rel Gad watershed is evident which accentuates the propermanagement of recharge areas. The study concludes that the GIS RS toolis useful in identifying recharge potential zones. It aids to better planningfor increasing recharge potential. Proper management of recharge potentialarea and spring water sources direct the future water availability to fulfillthe increasing water need of the communities.


Author(s):  
Rajnish Yadav ◽  
Mohammad Iqbal Bhat ◽  
Faisul-Ur- Rasool ◽  
Shabir Ahmed Bangroo ◽  
Roheela Ahmad ◽  
...  

Morphometric analysis is of vital importance in any hydrological research and is inevitable in development and management of watershed. Using the watershed as the main unit of morphometric characterization is the most logical choice, as well as geomorphological and hydrological processes take place within the drainage basin. A critical assessment and evaluation of morphometric parameters of Khag micro-watershed was accomplished through measurement of relief, linear and aerial aspects using Geographical Information System (GIS). The watershed boundaries, aspect, slope, digital elevation model (DEM), profile graph of topography, drainage order and drainage density mapswere generated for detailed study of micro-watershed using Shuttle Radar Topographic Mission (SRTM) data. The study area was designated as fourth order basin with the drainage area of 34.32 km2 and shows dendritic drainage pattern. The total length, drainage density and mean bifurcation ratio (Rb) were found to be 38.84 km, 1.13km/km2 and 1.73, respectively. The Khag micro-watershed showed the greater Rb value, which directs a strong structural control in the runoff pattern. A decrease in the stream frequency of flow was also observed with an increase in the order of flow. The shape parameters such as circulatory ratio, elongation ratio, length of over land flow, form factor and drainage texture of Khag micro-watershed were 0.42, 0.56, 0.43 km, 0.24 and 1.66, respectively. The Khag micro-watershed is elongated in shape and dendritic in drainage pattern. This can be attributed to the fact that the lithology and structural controls are more or less uniform. Relative relief and ruggedness number were 0.065 and 2.39 and are likely to subject the micro watershed to maximum soil erosion that demands, instantaneous soil conservation measure to be taken by watershed managers for its stability and sustainability. These studies area advantageous for the planning of rainwater harvesting and the management of the catchment area.


Sign in / Sign up

Export Citation Format

Share Document