scholarly journals GFPLAIN and Multi-Source Data Assimilation Modeling: Conceptualization of a Flood Forecasting Framework Supported by Hydrogeomorphic Floodplain Rapid Mapping

Hydrology ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 143
Author(s):  
Antonio Annis ◽  
Fernando Nardi

Hydrologic/hydraulic models for flood risk assessment, forecasting and hindcasting have been greatly supported by the rising availability of increasingly accurate and high-resolution Earth Observation (EO) data. EO-based topographic and hydrologic open geo data are, nowadays, available on large scales. Data Assimilation (DA) models allow Early Warning Systems (EWS) to produce accurate and timely flood predictions. DA-based EWS generally use river flow real-time observations and 1D hydraulic models to identify potential inundation hot spots. Detailed high-resolution 2D hydraulic modeling is usually not used in EWS for the computational burden and the numerical complexity of injecting multiple spatially distributed sources of flow observations. In recent times, DEM-based hydrogeomorphic models demonstrated their ability in characterizing river basin hydrologic forcing and floodplain domains providing data-parsimonious opportunities for data-scarce regions. This work investigates the use of hydrogeomorphic floodplain terrain processing for optimizing the ability of DA-based EWSs in using diverse distributed flow observations. A flood forecasting framework with novel applications of hydrogeomorphic floodplain processing is conceptualized for empowering flood EWSs in preliminarily identifying the computational domain for hydraulic modeling, rapid flood detection using satellite images, and filtering geotagged crowdsourced data for flood monitoring. The proposed flood forecasting framework supports the development of an integrated geomorphic-hydrologic/hydraulic modeling chain for a DA that values multiple sources of observation. This work investigates the value of floodplain hydrogeomorphic models to tackle the major challenges of DA for EWS with specific regard to the computational efficiency issues and the lack of data in ungauged river basins towards an improved flood forecasting able to use advanced hydrodynamic modeling and to inject all available sources of observations including flood phenomena captures by citizens.

2021 ◽  
Author(s):  
Antonio Annis ◽  
Fernando Nardi ◽  
Fabio Castelli

Abstract. Hydro-meteo hazard Early Warning Systems (EWSs) are operating in many regions of the world to mitigate nuisance effects of floods. EWSs performances are majorly impacted by the computational burden and complexity affecting flood prediction tools, especially for ungauged catchments that lack adequate river flow gauging stations. Earth Observation (EO) systems may surrogate to the lack of fluvial monitoring systems supporting the setting up of affordable EWSs. But, EO data, constrained by spatial and temporal resolution limitations, are not sufficient alone, especially at medium-small scales. Multiple sources of distributed flood observations need to be used for managing uncertainties of flood models, but this is not a trivial task for EWSs. In this work, a near real-time flood modelling approach is developed and tested for the simultaneous assimilation of both water level observations and EO-derived flood extents. An integrated physically-based flood wave generation and propagation modelling approach, that implements a Ensemble Kalman Filter, a parsimonious geomorphic rainfall-runoff algorithm (WFIUH) and a Quasi-2D hydraulic algorithm, is proposed. A data assimilation scheme is tested that retrieves distributed observed water depths from satellite images to update 2D hydraulic modelling state variables. Performances of the proposed approach are tested on a flood event for the Tiber river basin in central Italy. The selected case study shows varying performances depending if local and distributed observations are separately or simultaneously assimilated. Results suggest that the injection of multiple data sources into a flexible data assimilation framework, constitute an effective and viable advancement for flood mitigation tackling EWSs data scarcity, uncertainty and numerical stability issues.


2014 ◽  
Vol 15 (4) ◽  
pp. 1517-1531 ◽  
Author(s):  
Gerhard Smiatek ◽  
Harald Kunstmann ◽  
Andreas Heckl

Abstract The impact of climate change on the future water availability of the upper Jordan River (UJR) and its tributaries Dan, Snir, and Hermon located in the eastern Mediterranean is evaluated by a highly resolved distributed approach with the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) run at 18.6- and 6.2-km resolution offline coupled with the Water Flow and Balance Simulation Model (WaSiM). The MM5 was driven with NCEP reanalysis for 1971–2000 and with Hadley Centre Coupled Model, version 3 (HadCM3), GCM forcings for 1971–2099. Because only one regional–global climate model combination was applied, the results may not give the full range of possible future projections. To describe the Dan spring behavior, the hydrological model was extended by a bypass approach to allow the fast discharge components of the Snir to enter the Dan catchment. Simulation results for the period 1976–2000 reveal that the coupled system was able to reproduce the observed discharge rates in the partially karstic complex terrain to a reasonable extent with the high-resolution 6.2-km meteorological input only. The performed future climate simulations show steadily rising temperatures with 2.2 K above the 1976–2000 mean for the period 2031–60 and 3.5 K for the period 2070–99. Precipitation trends are insignificant until the middle of the century, although a decrease of approximately 12% is simulated. For the end of the century, a reduction in rainfall ranging between 10% and 35% can be expected. Discharge in the UJR is simulated to decrease by 12% until 2060 and by 26% until 2099, both related to the 1976–2000 mean. The discharge decrease is associated with a lower number of high river flow years.


2020 ◽  
pp. neurintsurg-2020-017053
Author(s):  
Emanuele Orru' ◽  
Miklos Marosfoi ◽  
Neil V Patel ◽  
Alexander L Coon ◽  
Christoph Wald ◽  
...  

BackgroundExisting travel restrictions limit the mobility of proctors, significantly delaying clinical trials and the introduction of new neurointerventional devices. We aim to describe in detail technical and legal considerations regarding international teleproctoring, a tool that could waive the need for in-person supervision during procedures.MethodsInternational teleproctoring was chosen to provide remote supervision during the first three intracranial aneurysm treatments with a new flow diverter (currently subject of a clinical trial) in the US. Real-time, high-resolution transmission software streamed audiovisual data to a proctor located in Canada. The software allowed the transmission of images in a de-identified, HIPAA-compliant manner.ResultsAll three flow diverters were implanted as desired by operator and proctor and without complication. The proctor could swap between images from multiple sources and reported complete spatial and situational awareness, without any significant lag or delay in communication. Procedural times and radiologic dose were similar to those of uncomplicated, routine flow diversion cases at our institution.ConclusionsInternational teleproctoring was successfully implemented in our clinical practice. Its first use provided important insights for establishing this tool in our field. With no clear horizon for lifting the current travel restrictions, teleproctoring has the potential to remove the need for proctor presence in the angiography suite, thereby allowing the field to advance through the continuation of trials and the introduction of new devices in clinical practice. In order for this tool to be used safely and effectively, highly reliable connection and high-resolution equipment is necessary, and multiple legal nuances have to be considered.


2008 ◽  
Vol 136 (3) ◽  
pp. 945-963 ◽  
Author(s):  
Jidong Gao ◽  
Ming Xue

Abstract A new efficient dual-resolution (DR) data assimilation algorithm is developed based on the ensemble Kalman filter (EnKF) method and tested using simulated radar radial velocity data for a supercell storm. Radar observations are assimilated on both high-resolution and lower-resolution grids using the EnKF algorithm with flow-dependent background error covariances estimated from the lower-resolution ensemble. It is shown that the flow-dependent and dynamically evolved background error covariances thus estimated are effective in producing quality analyses on the high-resolution grid. The DR method has the advantage of being able to significantly reduce the computational cost of the EnKF analysis. In the system, the lower-resolution ensemble provides the flow-dependent background error covariance, while the single-high-resolution forecast and analysis provides the benefit of higher resolution, which is important for resolving the internal structures of thunderstorms. The relative smoothness of the covariance obtained from the lower 4-km-resolution ensemble does not appear to significantly degrade the quality of analysis. This is because the cross covariance among different variables is of first-order importance for “retrieving” unobserved variables from the radar radial velocity data. For the DR analysis, an ensemble size of 40 appears to be a reasonable choice with the use of a 4-km horizontal resolution in the ensemble and a 1-km resolution in the high-resolution analysis. Several sensitivity tests show that the DR EnKF system is quite robust to different observation errors. A 4-km thinned data resolution is a compromise that is acceptable under the constraint of real-time applications. A data density of 8 km leads to a significant degradation in the analysis.


2013 ◽  
Vol 140 (680) ◽  
pp. 966-981 ◽  
Author(s):  
J. Barré ◽  
V.-H. Peuch ◽  
W. A. Lahoz ◽  
J.-L. Attié ◽  
B. Josse ◽  
...  

2014 ◽  
Vol 142 (2) ◽  
pp. 716-738 ◽  
Author(s):  
Craig S. Schwartz ◽  
Zhiquan Liu

Abstract Analyses with 20-km horizontal grid spacing were produced from parallel continuously cycling three-dimensional variational (3DVAR), ensemble square root Kalman filter (EnSRF), and “hybrid” variational–ensemble data assimilation (DA) systems between 0000 UTC 6 May and 0000 UTC 21 June 2011 over a domain spanning the contiguous United States. Beginning 9 May, the 0000 UTC analyses initialized 36-h Weather Research and Forecasting Model (WRF) forecasts containing a large convection-permitting 4-km nest. These 4-km 3DVAR-, EnSRF-, and hybrid-initialized forecasts were compared to benchmark WRF forecasts initialized by interpolating 0000 UTC Global Forecast System (GFS) analyses onto the computational domain. While important differences regarding mean state characteristics of the 20-km DA systems were noted, verification efforts focused on the 4-km precipitation forecasts. The 3DVAR-, hybrid-, and EnSRF-initialized 4-km precipitation forecasts performed similarly regarding general precipitation characteristics, such as timing of the diurnal cycle, and all three forecast sets had high precipitation biases at heavier rainfall rates. However, meaningful differences emerged regarding precipitation placement as quantified by the fractions skill score. For most forecast hours, the hybrid-initialized 4-km precipitation forecasts were better than the EnSRF-, 3DVAR-, and GFS-initialized forecasts, and the improvement was often statistically significant at the 95th percentile. These results demonstrate the potential of limited-area continuously cycling hybrid DA configurations and suggest additional hybrid development is warranted.


2016 ◽  
Vol 9 (10) ◽  
pp. 3779-3801 ◽  
Author(s):  
Colette Kerry ◽  
Brian Powell ◽  
Moninya Roughan ◽  
Peter Oke

Abstract. As with other Western Boundary Currents globally, the East Australian Current (EAC) is highly variable making it a challenge to model and predict. For the EAC region, we combine a high-resolution state-of-the-art numerical ocean model with a variety of traditional and newly available observations using an advanced variational data assimilation scheme. The numerical model is configured using the Regional Ocean Modelling System (ROMS 3.4) and takes boundary forcing from the BlueLink ReANalysis (BRAN3). For the data assimilation, we use an Incremental Strong-Constraint 4-Dimensional Variational (IS4D-Var) scheme, which uses the model dynamics to perturb the initial conditions, atmospheric forcing, and boundary conditions, such that the modelled ocean state better fits and is in balance with the observations. This paper describes the data assimilative model configuration that achieves a significant reduction of the difference between the modelled solution and the observations to give a dynamically consistent “best estimate” of the ocean state over a 2-year period. The reanalysis is shown to represent both assimilated and non-assimilated observations well. It achieves mean spatially averaged root mean squared (rms) residuals with the observations of 7.6 cm for sea surface height (SSH) and 0.4 °C for sea surface temperature (SST) over the assimilation period. The time-mean rms residual for subsurface temperature measured by Argo floats is a maximum of 0.9 °C between water depths of 100 and 300 m and smaller throughout the rest of the water column. Velocities at several offshore and continental shelf moorings are well represented in the reanalysis with complex correlations between 0.8 and 1 for all observations in the upper 500 m. Surface radial velocities from a high-frequency radar array are assimilated and the reanalysis provides surface velocity estimates with complex correlations with observed velocities of 0.8–1 across the radar footprint. A comparison with independent (non-assimilated) shipboard conductivity temperature depth (CTD) cast observations shows a marked improvement in the representation of the subsurface ocean in the reanalysis, with the rms residual in potential density reduced to about half of the residual with the free-running model in the upper eddy-influenced part of the water column. This shows that information is successfully propagated from observed variables to unobserved regions as the assimilation system uses the model dynamics to adjust the model state estimate. This is the first study to generate a reanalysis of the region at such a high resolution, making use of an unprecedented observational data set and using an assimilation method that uses the time-evolving model physics to adjust the model in a dynamically consistent way. As such, the reanalysis potentially represents a marked improvement in our ability to capture important circulation dynamics in the EAC. The reanalysis is being used to study EAC dynamics, observation impact in state-estimation, and as forcing for a variety of downscaling studies.


Sign in / Sign up

Export Citation Format

Share Document