scholarly journals Hafnium Zirconium Oxide Thin Films for CMOS Compatible Pyroelectric Infrared Sensors

2021 ◽  
Vol 6 (1) ◽  
pp. 27
Author(s):  
Clemens Mart ◽  
Malte Czernohorsky ◽  
Kati Kühnel ◽  
Wenke Weinreich

Pyroelectric infrared sensors are often based on lead-containing materials, which are harmful to the environment and subject to governmental restrictions. Ferroelectric Hf1−xZrxO2 thin films offer an environmentally friendly alternative. Additionally, CMOS integration allows for integrated sensor circuits, enabling scalable and cost-effective applications. In this work, we demonstrate the deposition of pyroelectric thin films on area-enhanced structured substrates via thermal atomic layer deposition. Scanning electron microscopy indicates a conformal deposition of the pyroelectric film in the holes with a diameter of 500 nm and a depth of 8 μm. By using TiN electrodes and photolithography, capacitor structures are formed, which are contacted via the electrically conductive substrate. Ferroelectric hysteresis measurements indicate a sizable remanent polarization of up to 331 μC cm−2, which corresponds to an area increase of up to 15 by the nanostructured substrate. For pyroelectric analysis, a sinusoidal temperature oscillation is applied to the sample. Simultaneously, the pyroelectric current is monitored. By assessing the phase of the measured current profile, the pyroelectric origin of the signal is confirmed. The devices show sizable pyroelectric coefficients of −475 μC m−2 K−1, which is larger than that of lead zirconate titanate (PZT). Based on the experimental evidence, we propose Hf1−xZrxO2 as a promising material for future pyroelectric applications.

1991 ◽  
Vol 230 ◽  
Author(s):  
A. Pignolet ◽  
P. E. Schmid ◽  
L. Wang ◽  
F. Lévy

AbstractPure and doped lead-titanate (PT) and lead-zirconate-titanate (PZT) thin films have been deposited on platinum-coated silicon by rf-magnetron sputtering from pressed powder targets. The films have been deposited without substrate heating. The amorphous films were then annealed in an oxygen flow. The structure of the films is tetragonal or rhombohedral depending on composition. The electrical resistivity, dielectric permittivity, ferroelectric hysteresis and pyroelectric coefficient are reported.


2007 ◽  
Vol 336-338 ◽  
pp. 173-176
Author(s):  
Hui Qing Fan ◽  
Lai Jun Liu ◽  
Xiu Li Chen ◽  
Jie Zhang ◽  
Wei Wang

Barium modified lead zirconate titanate (PBZT) thin films were grown epitaxially on Pt/Ti/SiO2/Si substrates by radio-frequency magnetron sputtering deposition and characterized by X-ray diffraction and scanning electron microscopy. Depending on the growth condition, a wide variation of crystal structure and morphology was evolved in PBZT thin films. The formation of phase structure and pyrochlore phase was strongly dependent on the oxygen partial pressure and re-evaporation of lead from the films during the deposition. Perovskite films were obtained by optimizing the deposition conditions and analyzed by the ferroelectric hysteresis (P~E).


2007 ◽  
Vol 14 (02) ◽  
pp. 229-234
Author(s):  
SARAWUT THOUNTOM ◽  
MANOCH NAKSATA ◽  
KENNETH MACKENZIE ◽  
TAWEE TUNKASIRI

Lead zirconate titanate (PZT) films with compositions near the morphotropic phase boundary were fabricated on Pt (111)/ Ti / SiO 2/ Si (100) using the triol sol–gel method. The effect of the pre-heating temperature on the phase transformations, microstructures, electrical properties, and ferroelectric properties of the PZT thin films was investigated. Randomly oriented PZT thin films pre-heated at 400°C for 10 min and annealed at 600°C for 30 min showed well-defined ferroelectric hysteresis loops with a remnant polarization of 26.57 μC/cm2 and a coercive field of 115.42 kV/cm. The dielectric constant and dielectric loss of the PZT films were 621 and 0.0395, respectively. The microstructures of the thin films are dense, crack-free, and homogeneous with fine grains about 15–20 nm in size.


1990 ◽  
Vol 202 ◽  
Author(s):  
L. P. Cook ◽  
M. D. Vaudin ◽  
P. K. Schenck ◽  
W. Wong-Ng ◽  
C. K. Chiang ◽  
...  

ABSTRACTThin films of BaTiO3 and PZT (lead zirconate titanate, 47%PbTiO3, 53%PbZrO3) have been produced by laser irradiation of the appropriate ceramic targets and deposition of the ejected and vaporized material on planar substrates. The microstructural changes during thermal processing of these films have been studied by scanning electron microscopy/energy dispersive x-ray spectrometry (SEM/EDX), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), x-ray diffraction (XRD), and by measurement of electrical properties. Films have been deposited using both Nd/YAG and excimer lasers and on unheated as well as heated substrates. Excimer films are considerably smoother than the Nd/YAG films, and the uniformity of the as-deposited microstructures is promoted by substrate heating. However, ferroelectric hysteresis loops were only observed for the considerably less smooth Nd/YAG PZT films; thermal treatment did little to improve the smoothness of these films. An excimer BaTiO3 film deposited on a heated substrate showed crystallographic alignment and had a dielectric constant of −100. Efforts are underway to combine the best features of films produced by both methods.


1991 ◽  
Vol 223 ◽  
Author(s):  
Thomas M. Graettinger ◽  
O. Auciello ◽  
M. S. Ameen ◽  
H. N. Al-Shareef ◽  
K. Gifford ◽  
...  

ABSTRACTFerroelectric oxide films have been studied for their potential application as integrated optical materials and nonvolatile memories. Electro-optic properties of potassium niobate (KNbO3) thin films have been measured and the results correlated to the microstructures observed. The growth parameters necessary to obtain single phase perovskite lead zirconate titanate (PZT) thin films are discussed. Hysteresis and fatigue measurements of the PZT films were performed to determine their characteristics for potential memory devices.


2004 ◽  
Vol 830 ◽  
Author(s):  
Hiroshi Nakaki ◽  
Hiroshi Uchida ◽  
Shoji Okamoto ◽  
Shintaro Yokoyama ◽  
Hiroshi Funakubo ◽  
...  

ABSTRACTRare-earth-substituted tetragonal lead zirconate titanate thin films were synthesized for improving the ferroelectric property of conventional lead zirconate titanate. Thin films of Pb1.00REx (Zr0.40Ti0.60)1-(3x /4)O3 (x = 0.02, RE = Y, Dy, Er and Yb) were deposited on (111)Pt/Ti/SiO2/(100)Si substrates by a chemical solution deposition (CSD). B-site substitution using rare-earth cations described above enhanced the crystal anisotropy, i.e., ratio of PZT lattice parameters c/a. Remanent polarization (Pr) of PZT film was enhanced by Y3+-, Dy3+- and Er3+-substitution from 20 μC/cm2 up to 26, 25 and 26 μC/cm2 respectively, while ion substitution using Yb3+ degraded the Pr value down to 16 μC/cm2. These films had similar coercive fields (Ec) of around 100 kV/cm. Improving the ferroelectric property of PZT film by rare-earth-substitution would be ascribed to the enhancement of the crystal anisotropy. We concluded that ion substitution using some rare-earth cations, such as Y3+, Dy3+ or Er3+, is one of promising technique for improving the ferroelectric property of PZT film.


Sign in / Sign up

Export Citation Format

Share Document