scholarly journals Effect of the Nitrogen Diffusion Layer Formed by Gas Blow Induction Heating Nitriding on Wear Resistance and Fatigue Properties of Titanium Alloy

Proceedings ◽  
2018 ◽  
Vol 2 (8) ◽  
pp. 409 ◽  
Author(s):  
Shogo Takesue ◽  
Shoichi Kikuchi ◽  
Hiroyuki Akebono ◽  
Jun Komotori
2010 ◽  
Vol 24 (15n16) ◽  
pp. 2502-2505 ◽  
Author(s):  
MD. SHAMIMUR RAHMAN ◽  
TAKESHI KATSUMA ◽  
DAISUKE YONEKURA ◽  
RI-ICHI MURAKAMI

Titanium alloy has an attractive strength-to-weight ratio and good fatigue properties. However, the titanium alloy has very poor wear resistance, therefore, surface treatments must be considered in order to make the contact parts. Hard thin film deposited by PVD technique is well-known to improve the wear resistance. In this study, chromium nitride ( CrN ) film was applied to titanium alloy and its effect on the fatigue behavior was investigated. Ti -6 Al -4 V alloy was used as a substrate material. The CrN film was deposited by arc ion plating (AIP) method at two different negative bias voltages because the film hardness, crystal orientation and surface morphology were strongly depended on the bias voltage during the deposition. Tension-tension fatigue test and tensile test were carried out to investigate the fatigue properties. As the result, the fatigue strength was influenced by the deposition of the CrN film, especially, the fatigue strength was remarkable decreased by the deposition of the CrN film at high negative bias voltage compared to the uncoated specimen and the deposition of the CrN at low negative bias voltage. The difference of the fatigue strength was also investigated on the basis of crack initiating behavior during fatigue test and tensile test.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3951
Author(s):  
Tadeusz Frączek ◽  
Rafał Prusak ◽  
Marzena Ogórek ◽  
Zbigniew Skuza

The study assessed the effect of ion nitriding on the properties of the surface layer of Grade 5 titanium alloy used, among others, in medicine. Titanium and its alloys have low hardness and insufficient wear resistance in conditions of friction which limits the use of these materials. The improvement of these properties is only possible by the appropriate modification of the surface layer of these alloys. The ion nitriding process was carried out in a wide temperature range, i.e., 530–590 °C, and in the time range 5–17 h. Two variants of nitriding were applied: cathodic (conventional) nitriding and nitriding using the active screen method. The research results presented in this article allow for stating that each of the applied nitriding variants improves the analysed properties (nitrogen diffusion depth, hardness, wear resistance, microstructure analysis and surface topography) of the surface layers in relation to the material before nitriding. The hardness increased in every nitriding variant (the use of the additional active screen increased the hardness to 1021 HK0.025). The greatest increase in titanium abrasion resistance was found for surfaces after cathodic nitriding with an active screen. Each of the applied nitriding variants resulted in surface development.


2020 ◽  
pp. 130-135
Author(s):  
D.N. Korotaev ◽  
K.N. Poleshchenko ◽  
E.N. Eremin ◽  
E.E. Tarasov

The wear resistance and wear characteristics of cluster-gradient architecture (CGA) nanostructured topocomposites are studied. The specifics of tribocontact interaction under microcutting conditions is considered. The reasons for retention of high wear resistance of this class of nanostructured topocomposites are studied. The mechanisms of energy dissipation from the tribocontact zone, due to the nanogeometry and the structural-phase structure of CGA topocomposites are analyzed. The role of triboactivated deformation and diffusion processes in providing increased wear resistance of carbide-based topocomposites is shown. They are tested under the conditions of blade processing of heat-resistant titanium alloy.


2011 ◽  
Vol 46 (6) ◽  
pp. 834-840
Author(s):  
I. M. Pohrelyuk ◽  
O. V. Tkachuk ◽  
O. V. Sambors’kyi

Author(s):  
Weipeng Duan ◽  
Meiping Wu ◽  
Jitai Han

TC4, which is one of the most widely used titanium alloy, is frequently used in biomedical field due to its biocompatible. In this work, selective laser melting (SLM) was used to manufacture TC4 parts and the printed parts were heat-treated using laser rescanning technology. The experimental results showed that laser rescanning had a high impact on the quality of SLMed part, and a different performance on wear resistance can be found on the basis. It can be seen that the volume porosity of the sample was 7.6 ± 0.5% without using any further processing technology. The volume porosity of the sample processed using laser rescanning strategy was decreased and the square-framed rescanning strategy had a relative optimal volume porosity (1.5 ± 0.3%) in all these five samples. With the further decreasing of volume porosity, the wear resistance decreased at the same time. As its excellent bio-tribological properties, the square-framed rescanning may be a potential suitable strategy to forming TC4 which used in human body.


NANO ◽  
2013 ◽  
Vol 08 (04) ◽  
pp. 1350038 ◽  
Author(s):  
JIANQUAN LI ◽  
HUASHI LIU ◽  
JIANING LI ◽  
GUOZHONG LI

Zn was firstly used to improve wear resistance of a TA7 (Ti–5Al–2.5Sn) titanium alloy surface by mean of a laser alloying (LA) technique. The synthesis of the hard coating on a TA7 titanium alloy by LA of Co–Ti–Cr–TiB2–Zn–CeO2 pre-placed powders was investigated by means of scanning electron microscope (SEM), X-ray diffraction (XRD) and high resolution transmission electron microscope (HRTEM). Experimental results indicated lot of the nanocrystals, such as Ti–B/CoZn13 and the amorphous phases were produced in such LA coating. The nucleation and growth of the amorphous phases were retarded by the nanocrystals in a certain extent during the crystallization process of the amorphous phases. Compared with a TA7 alloy substrate, an improvement of the wear resistance was obtained for such LA composite coating.


Sign in / Sign up

Export Citation Format

Share Document