scholarly journals Leaching Kinetics of Selenium, Tellurium and Silver from Copper Anode Slime by Sulfuric Acid Leaching in the Presence of Manganese(IV) Oxide and Graphite

2021 ◽  
Vol 3 (1) ◽  
pp. 16
Author(s):  
Kurniawan Kurniawan ◽  
Jae-chun Lee ◽  
Jonghyun Kim ◽  
Rina Kim ◽  
Sookyung Kim

Sulfuric acid leaching of copper anode slime (CAS) in the presence of manganese(IV) oxide (MnO2) and graphite was investigated for Se, Te and Ag recovery. The study reveals that the leaching of Se, Te and Ag was facilitated by the galvanic interaction with MnO2, and graphite played the role of a catalyst. The leaching process could yield 81.9% Se, 90.8% Te, and 80.7% Ag leaching efficiency when the conditions were maintained as 500 rpm, 2.0 M H2SO4, 0.8/0.8/1 MnO2/graphite/CAS, and 90 °C temperature. The kinetic study showed that Se leaching followed the surface chemical reaction at all the tested temperature range (25–90 °C) with the activation energy of 27.7 kJ/mol. Te and Ag leaching at temperature 25–50 °C followed the mixed and surface chemical reaction models, respectively, and changed to fit the diffusion and mixed control models, respectively, in the temperature range 60–90 °C with the corresponding activation energy of 17.8 and 12.2 kJ/mol.

2021 ◽  
pp. 105745
Author(s):  
Kurniawan Kurniawan ◽  
Jae-chun Lee ◽  
Jonghyun Kim ◽  
Ha Bich Trinh ◽  
Sookyung Kim

2002 ◽  
Vol 41 (25) ◽  
pp. 6593-6599 ◽  
Author(s):  
Jhumki Hait ◽  
R. K. Jana ◽  
Vinay Kumar ◽  
S. K. Sanyal

2019 ◽  
Vol 10 (1) ◽  
pp. 198 ◽  
Author(s):  
Hao Peng ◽  
Liu Yang ◽  
Ya Chen ◽  
Jing Guo

This paper was to develop an efficient process for efficient recovery and separation of vanadium and chromium. The vanadium-chromium reducing residue was conducted by oxidation acidic leaching with MnO2, followed by selective adsorption of vanadium and precipitation of chromium, respectively. The results showed that 97.93% vanadium was leached out and then adsorbed by melamine at pH 1.8 at 90 °C for 60 min. Almost all chromium was leached out and efficiently recovered as Cr2O3. The leaching process was mainly controlled by surface chemical reaction, and its kinetic behaviors fitted well with the shrink core model. The apparent activation energy for vanadium and chromium leaching out wascalculated as 19.93 kJ·mol−1 and 21.26 kJ·mol−1, respectively.


2020 ◽  
Vol 56 (2) ◽  
pp. 193-202
Author(s):  
S. Wang ◽  
L. Li ◽  
S.-D. Wang ◽  
H. Wang ◽  
G.-D. Wu

A novel process of chlorinating roasting followed by chlorinating leaching to extract platinum and gold from copper anode slimes was proposed in this research. Results of thermodynamic analysis and experimental research showed that the platinum was chlorinated into PtCl2 while the gold existed in the form of metallic Au during the roasting process. With the copper anode slime being directly leached using a traditional process, the Pt recovery rate was low and came to 80.72%. After the roasting process with sodium chloride and concentrated sulfuric acid in oxygen atmosphere, the recovery rate of Pt increased to a value around 95%. Moreover, with excessive addition of concentrated sulfuric acid, more H2O (g) was generated and the formation of Cl2 (g) decreased due to the transition from HCl (g) and Cl2 (g), as a result of which the Pt recovery rate decreased. In addition, this chlorinating roasting had little effect on the Au recovery due to its difficulty to be chlorinated.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 810
Author(s):  
Zhanyong Guo ◽  
Ping Guo ◽  
Guang Su ◽  
Fachuang Li

In this paper, nickel-containing residue, a typical solid waste produced in the battery production process, was used to study the cavitation characteristics of ultrasonic waves in a liquid–solid reaction. The ultrasonically-enhanced leaching technology for multicomponent and complex nickel-containing residue was studied through systematic ultrasonic-conventional comparative experiments. An ultrasonic leaching kinetics model was established which provided reliable technological guidance and basic theory for the comprehensive utilization of nickel-containing residue. In the study, it was found that ultrasonically-enhanced leaching for 40 min obtained the same result as conventional leaching for 80 min, and the Ni extraction degree reached more than 95%. According to the kinetic fitting of the leaching process, it was found that the sulfuric acid leaching process belonged to the diffusion-controlled model of solid product layers under conventional and ultrasonic conditions, and the activation energy of the reaction was Ea1 = 17.74 kJ/mol and Ea2 = 5.04 kJ/mol, respectively.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1176
Author(s):  
Fuqiang Zheng ◽  
Yufeng Guo ◽  
Feng Chen ◽  
Shuai Wang ◽  
Jinlai Zhang ◽  
...  

The effects of F− concentration, leaching temperature, and time on the Ti leaching from Ti-bearing electric furnace slag (TEFS) by [NH4+]-[F−] solution leaching process was investigated to reveal the leaching mechanism and kinetics of titanium. The results indicated that the Ti leaching rate obviously increased with the increase of leaching temperature and F− concentration. The kinetic equation of Ti leaching was obtained, and the activation energy was 52.30 kJ/mol. The fitting results of kinetic equations and calculated values of activation energy both indicated that the leaching rate of TEFS was controlled by surface chemical reaction. The semi-empirical kinetics equation was consistent with the real experimental results, with a correlation coefficient (R2) of 0.996. The Ti leaching rate reached 92.83% after leaching at 90 °C for 20 min with F− concentration of 14 mol/L and [NH4+]/[F−] ratio of 0.4. The leaching rates of Si, Fe, V, Mn, and Cr were 94.03%, 7.24%, 5.36%, 4.54%, and 1.73%, respectively. The Ca, Mg, and Al elements were converted to (NH4)3AlF6 and CaMg2Al2F12 in the residue, which can transform into stable oxides and fluorides after pyro-hydrolyzing and calcinating.


Sign in / Sign up

Export Citation Format

Share Document