scholarly journals AVIRIS-NG Data for Geological Applications in Southeastern Parts of Aravalli Fold Belt, Rajasthan

Proceedings ◽  
2019 ◽  
Vol 24 (1) ◽  
pp. 16
Author(s):  
Sameeksha Mishra ◽  
Shovan L. Chattoraj ◽  
Alen Benny ◽  
Richa U. Sharma ◽  
P. K. Champati Ray

Advanced techniques using high resolution hyperspectral remote sensing data has recently evolved as an emerging tool with potential to aid mineral exploration. In this study, pertinently, five mosaicked scenes of Airborne Visible InfraRed Imaging Spectrometer-Next Generation (AVIRIS-NG) hyperspectral data of southeastern parts of the Aravalli Fold belt in Jahazpur area, Rajasthan, were processed. The exposed Proterozoic rocks in this area is of immense economic and scientific interest because of richness of poly-metallic mineral resources and their unique metallogenesis. Analysis of high resolution multispectral satellite image reveals that there are many prominent lineaments which acted as potential conduits of hydrothermal fluid emanation, some of which resulted in altering the country rock. This study takes cues from studying those altered minerals to enrich our knowledge base on mineralized zones. In this imaging spectroscopic study we have identified different hydrothermally altered minerals consisting of hydroxyl, carbonate and iron-bearing species. Spectral signatures (image based) of minerals such as Kaosmec, Talc, Kaolinite, Dolomite, and Montmorillonite were derived in SWIR (Short wave infrared) region while Iron bearing minerals such as Goethite and Limonite were identified in the VNIR (Visible and Near Infrared) region of electromagnetic spectrum. Validation of the target minerals was done by subsequent ground truthing and X-ray diffractogram (XRD) analysis. The altered end members were further mapped by Spectral Angle Mapper (SAM) and Adaptive Coherence Estimator (ACE) techniques to detect target minerals. Accuracy assessment was reported to be 86.82% and 77.75% for SAM and ACE respectively. This study confirms that the AVIRIS-NG hyperspectral data provides better solution for identification of endmember minerals.

2021 ◽  
Vol 13 (15) ◽  
pp. 2967
Author(s):  
Nicola Acito ◽  
Marco Diani ◽  
Gregorio Procissi ◽  
Giovanni Corsini

Atmospheric compensation (AC) allows the retrieval of the reflectance from the measured at-sensor radiance and is a fundamental and critical task for the quantitative exploitation of hyperspectral data. Recently, a learning-based (LB) approach, named LBAC, has been proposed for the AC of airborne hyperspectral data in the visible and near-infrared (VNIR) spectral range. LBAC makes use of a parametric regression function whose parameters are learned by a strategy based on synthetic data that accounts for (1) a physics-based model for the radiative transfer, (2) the variability of the surface reflectance spectra, and (3) the effects of random noise and spectral miscalibration errors. In this work we extend LBAC with respect to two different aspects: (1) the platform for data acquisition and (2) the spectral range covered by the sensor. Particularly, we propose the extension of LBAC to spaceborne hyperspectral sensors operating in the VNIR and short-wave infrared (SWIR) portion of the electromagnetic spectrum. We specifically refer to the sensor of the PRISMA (PRecursore IperSpettrale della Missione Applicativa) mission, and the recent Earth Observation mission of the Italian Space Agency that offers a great opportunity to improve the knowledge on the scientific and commercial applications of spaceborne hyperspectral data. In addition, we introduce a curve fitting-based procedure for the estimation of column water vapor content of the atmosphere that directly exploits the reflectance data provided by LBAC. Results obtained on four different PRISMA hyperspectral images are presented and discussed.


2018 ◽  
Vol 10 (8) ◽  
pp. 1208 ◽  
Author(s):  
Javier Marcello ◽  
Francisco Eugenio ◽  
Javier Martín ◽  
Ferran Marqués

Coastal ecosystems experience multiple anthropogenic and climate change pressures. To monitor the variability of the benthic habitats in shallow waters, the implementation of effective strategies is required to support coastal planning. In this context, high-resolution remote sensing data can be of fundamental importance to generate precise seabed maps in coastal shallow water areas. In this work, satellite and airborne multispectral and hyperspectral imagery were used to map benthic habitats in a complex ecosystem. In it, submerged green aquatic vegetation meadows have low density, are located at depths up to 20 m, and the sea surface is regularly affected by persistent local winds. A robust mapping methodology has been identified after a comprehensive analysis of different corrections, feature extraction, and classification approaches. In particular, atmospheric, sunglint, and water column corrections were tested. In addition, to increase the mapping accuracy, we assessed the use of derived information from rotation transforms, texture parameters, and abundance maps produced by linear unmixing algorithms. Finally, maximum likelihood (ML), spectral angle mapper (SAM), and support vector machine (SVM) classification algorithms were considered at the pixel and object levels. In summary, a complete processing methodology was implemented, and results demonstrate the better performance of SVM but the higher robustness of ML to the nature of information and the number of bands considered. Hyperspectral data increases the overall accuracy with respect to the multispectral bands (4.7% for ML and 9.5% for SVM) but the inclusion of additional features, in general, did not significantly improve the seabed map quality.


The hyper spectral image covers a broad range of wavelengths in electromagnetic spectrum, spanning from visible to near-infrared region. The basic objective of hyperspectral imaging is to attain the spectrum for each pixel in the image of a scene, with the aim of identifying objects in the scene and its classification. The hyperspectral images give detailed spectral information but their spatial resolution is very poor. So to enhance the visual quality of the hyperspectral image, we can perform image fusion with high spatial information multispectral image. This paper provides a complete description of hyperspectral imaging and image fusion methods of hyperspectral and multispectral images. A quantitative and qualitative comparative analysis on performance of various hyperspectral and multispectral image fusion techniques are also done.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Dae-Myeong Geum ◽  
SangHyeon Kim ◽  
Seong Kwang Kim ◽  
SooSeok Kang ◽  
JiHoon Kyhm ◽  
...  

AbstractIn this study, multicolor photodetectors (PDs) fabricated by using bulk p-i-n-based visible GaAs and near-infrared InGaAs structures were monolithically integrated through a high-throughput epitaxial lift-off (ELO) process. To perform multicolor detection in integrated structures, GaAs PDs were transferred onto InGaAs PDs by using a Y2O3 bonding layer to simultaneously detect visible and near-infrared photons and minimize the optical loss. As a result, it was found that the GaAs top PD and InGaAs bottom PD were vertically aligned without tilting in x-ray diffraction (XRD) measurement. A negligible change in the dark currents for each PD was observed in comparison with reference PDs through electrical characterization. Furthermore, through optical measurements and simulation, photoresponses were clearly revealed in the visible and near-infrared band for the material’s absorption region, respectively. Finally, we demonstrated the simultaneous multicolor detection of the visible and near-infrared region,which implies individual access to each PD without mutual interference. These results are a significant improvement for the fabrication of multicolor PDs that enables the formation of bulk-based multicolor PDs on a single substrate with a high pixel density and nearly perfect vertical alignment for high-resolution multicolor imaging.


Author(s):  
Sara Salehi ◽  
Simon Mose Thaarup

While multispectral images have been in regular use since the 1970s, the widespread use of hyperspectral images is a relatively recent trend. This technology comprises remote measurement of specific chemical and physical properties of surface materials through imaging spectroscopy. Regional geological mapping and mineral exploration are among the main applications that may benefit from hyperspectral technology. Minerals and rocks exhibit diagnostic spectral features throughout the electromagnetic spectrum that allow their chemical composition and relative abundance to be mapped. Most studies using hyperspectral data for geological applications have concerned areas with arid to semi-arid climates, and using airborne data collection. Other studies have investigated terrestrial outcrop sensing and integration with laser scanning 3D models in ranges of up to a few hundred metres, whereas less attention has been paid to ground-based imaging of more distant targets such as mountain ridges, cliffs or the walls of large pits. Here we investigate the potential of using such data in well-exposed Arctic regions with steep topography as part of regional geological mapping field campaigns, and to test how airborne hyperspectral data can be combined with similar data collected on the ground or from moving platforms such as a small ship. The region between the fjords Ikertoq and Kangerlussuaq (Søndre Strømfjord) in West Greenland was selected for a field study in the summer of 2016. This region is located in the southern part of the Palaeoproterozoic Nagssugtoqidian orogen and consists of high-grade metamorphic ortho- and paragneisses and metabasic rocks (see below). A regional airborne hyperspectral data set (i.e. HyMAP) was acquired here in 2002 (Tukiainen & Thorning 2005), comprising 54 flight lines covering an area of c. 7500 km2; 19 of these flight lines were selected for the present study (Fig. 1). The target areas visited in the field were selected on the basis of preliminary interpretations of HyMap scenes and geology (Korstgård 1979). Two different sensors were utilised to acquire the new hyperspectral data, predominantly a Specim AisaFenix hyperspectral scanner due to its wide spectral range covering the visible to near infrared and shortwave infrared parts of the electromagnetic spectrum. A Rikola Hyperspectral Imager constituted a secondary imaging system. It is much smaller and lighter than the Fenix scanner, but is spectrally limited to the visible near infrared range. The results obtained from combining the airborne hyperspectral data and the Rikola instrument are presented in Salehi (2018), this volume. In addition, representative samples of the main rock types were collected for subsequent laboratory analysis. A parallel study was integrated with geological and 3D photogrammetric mapping in Karrat region farther north in West Greenland (Rosa et al. 2017; Fig. 1).


2015 ◽  
Vol 8 (8) ◽  
pp. 8257-8294 ◽  
Author(s):  
H. Ohyama ◽  
S. Kawakami ◽  
T. Tanaka ◽  
I. Morino ◽  
O. Uchino ◽  
...  

Abstract. Solar absorption spectra in the near-infrared region have been continuously acquired with a ground-based (g-b) high-resolution Fourier transform spectrometer (FTS) at Saga, Japan since July 2011. Column-averaged dry-air mole fractions of greenhouse gases were retrieved from the measured spectra for the period from July 2011 to December 2014. Aircraft measurements of CO2 and CH4 for calibrating the g-b FTS data were performed in January 2012 and 2013, and it is found that the g-b FTS and aircraft data agree to within ±0.2 %. The column-averaged dry-air mole fractions of CO2 and CH4 (XCO2 and XCH4) show increasing trends, with average growth rates of 2.3 ppm yr−1 and 9.5 ppb yr−1, respectively, during the ~ 3.5 yr of observation. We compared the g-b FTS XCO2 and XCH4 data with those derived from backscattered solar spectra in the short-wavelength infrared region measured with Thermal And Near-infrared Sensor for carbon Observation-Fourier Transform Spectrometer (TANSO-FTS) onboard the Greenhouse gases Observing SATellite (GOSAT). Average differences between TANSO-FTS and g-b FTS data (TANSO-FTS minus g-b FTS) are 0.40 ± 2.51 ppm and −7.6 ± 13.7 ppb for XCO2 and XCH4, respectively. Using aerosol information measured with a sky radiometer at Saga, we found that the differences between the TANSO-FTS and g-b FTS data are moderately negatively correlated with aerosol optical thickness and do not depend explicitly on aerosol size. In addition, from aerosol profiles measured with lidar located right by the g-b FTS, we were able to show that cirrus clouds and tropospheric aerosols accumulated in the lower layers of the atmosphere tend to overestimate or underestimate the TANSO-FTS data.


Author(s):  
Lorena de Moura Melo ◽  
Adriano Castelo Dos Santos ◽  
Kardelan Arteiro da Silva ◽  
Uilian do Nascimento Barbosa ◽  
Géssyca Fernanda De Sena Oliveira ◽  
...  

The present work aims to assess the effect of water stress on the reflectance emitted by leaves of Eucalyptus saligna individuals. The design was completely randomized and the study comprised 30 subjects who underwent 5 cycles of drought simulation, 45 days each. Five individuals were submitted to water deficit treatment and five were used as controls, remaining in adequate water conditions. The experiment and data collection were performed in the external facilities of the forest management laboratory of the Federal University of Santa Maria, Rio Grande do Sul, Brazil. Which it comprised the period from September 2014 to April 2015. Spectral information was collected from 24-month-old tree individuals in adequate water and water stress situations by means of FieldSpec®3 spectroradiometer. Subsequently, the spectral data for the electromagnetic spectrum range from 400 nm to 1700 nm were processed and analyzed. The resulting spectral behavior varied between water stress cycles. In the 450 nm wavelength range, the reflectances ranged from 3.8% to 7.4%, at 550 nm from 7.9% to 14% and at 650 nm from 4.8% to 8.8%. In the near infrared region, in the 900 nm to 1300 nm range, the reflectances ranged from 28% to 62%. The spectral response of E. saligna showed minimal differences when compared to healthy green vegetation, even though it was exposed to water deficit situations. From the information obtained, this research can be used as a parameter for comparative analysis between species belonging to the genus Eucalyptus sp.


2019 ◽  
Vol 9 (2) ◽  
pp. 49
Author(s):  
Tanumi Kumar ◽  
Dibyendu Dutta ◽  
Diya Chatterjee ◽  
K Chandrasekar ◽  
Goru Srinivasa Rao ◽  
...  

The study highlights the hyperspectral characteristics of canopies of 14 tropical mangrove species, belonging to nine families found in the tidal forests of the Indian Sundarbans. Hyperspectral observations were recorded using a field spectroradiometer, pre-processed and subjected to derivative analysis and continuum removal. Mann-Whitney U tests were applied on the spectral data in four spectral forms: (i) Reflectance Spectra (ii) First Derivative, (iii) Second Derivative and (iv) Continuum Removal Reflectance Spectra. Factor analysis was applied in each of the spectral forms for feature reduction and identification of the important wavelengths for species discrimination. Stepwise discriminant analysis was used on the feature reduced reflectance spectra to obtain optimal bands for computation of Jeffries–Matusita distance. The Mann-Whitney U test could be satisfactorily used for determining the significant (separable) bands for discriminating the species. In general, the red region, red edge domain, specific near infrared bands (including 759, 919, 934, 940, 948, 1152, 1156, 1159 and 1212 nm) and shortwave infrared region (1503–1766 nm) played major roles in spectral separability. Overall, hyperspectral data showed potential for discriminating between mangrove canopies of different species and the results of the study also indicated the usefulness of the applied statistical tools for discrimination.


Sign in / Sign up

Export Citation Format

Share Document