scholarly journals Risk Analysis and Extension Assessment for the Stability of Surrounding Rock in Deep Coal Roadway

Author(s):  
Chunjing Gao ◽  
Dongmei Huang ◽  
Xikun Chang ◽  
Han Xi

In order to evaluate the surrounding rock stability of deep roadways, the diversity of accident hazard sources in deep coal mining is statistically analyzed. To conduct an effective evaluation, first, the risk analysis of the factors affecting the rock mass accidents is carried out, and the comprehensive safety index system of rock accidents in deep mine roadway is established. Further, combining the theory of hazard sources with the extension method, a matter–element model for the risk assessment of rock mass accidents in deep roadway is established. Finally, the hazard sources for the surrounding rock stability of deep roadway in the E-Zhuang coal mine of Xinwen Ming area are evaluated. The results show that the risk grade of the surrounding rock for deep roadways in E-Zhuang coal mine is “B”, which is generally safe, the human factors and organizational management factors are relatively safe, and some suggestions for improvement are put forward.

2015 ◽  
Vol 777 ◽  
pp. 8-12 ◽  
Author(s):  
Lin Zhen Cai ◽  
Cheng Liang Zhang

HuJiaDi tunnel construction of Dai Gong highway is troublesome, the surrounding-rock mass give priority to full to strong weathering basalt, surrounding rock integrity is poor, weak self-stability of surrounding rock, and tunnel is prone to collapse. In order to reduce disturbance, taking advantage of the ability of rock mass, excavation adopt the method of "more steps, short footage and strong support". The excavation method using three steps excavation, The excavation footage is about 1.2 ~ 1.5 m; The surrounding rock bolting system still produce a large deformation after completion of the first support construction, it shows that the adopted support intensity cannot guarantee the stability of the tunnel engineering. Using ABAQUS to simulate tunnel excavation support, optimizing the support parameters of the tunnel, conducting comparative analysis with Monitoring and Measuring and numerical simulation results, it shows that the displacement - time curves have a certain consistency in numerical simulation of ABAQUS and Monitoring and Measuring.


2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Jucai Chang ◽  
Kai He ◽  
Zhiqiang Yin ◽  
Wanfeng Li ◽  
Shihui Li ◽  
...  

In view of the influence of mining stress on the stability of the surrounding rock of inclined roof mining roadways in deep mines, the surrounding rock stability index is defined and solved based on the rock strength criterion and the stress distribution. The mining roadway of the 17102(3) working face of the Pansan Coal Mine is used as the engineering background and example. The surrounding rock’ stabilities under the conditions of no support and bolt support are analyzed according to the surrounding rock’s stability index and the deformation data. The results show that the areas of low wall and high wall instability are 1.68 m2 and 2.12 m2, respectively, and the low wall is more stable than the high wall; the areas of the roof and floor instability are 0.33 m2 and 0.35 m2, respectively, and the roof and floor are more stable than the two sides. During mining, the area of instability greatly increases at first, then decreases to 0, and reaches a maximum value at the peak of the abutment pressure. The stability of the surrounding rock decreases first and then increases. Compared with the end anchoring bolt support, the full-length anchoring bolt support reduces the area of instability to a greater extent, and the full-length anchoring bolt support effect is better. The surrounding rock in the end anchoring zone and the full-length anchoring zone began to deform significantly at 200 m and 150 m from the working face, respectively. This indicates that the control effect of the full-length anchoring bolt support is better and verifies the rationality of the surrounding rock stability index to describe the instability characteristics. This research method can provide a theoretical reference for analysis of the stability characteristics and support design of different cross-section roadways.


2004 ◽  
Vol 261-263 ◽  
pp. 1563-1568
Author(s):  
Le Wen Zhang ◽  
Shu Chen Li ◽  
Shu Cai Li

The method of bolt-grouting supporting, grouting into surrounding rock mass by bolts in jointed rock mass roadway, is obtained wide application. However, it is difficult to determine rock mass parameter of bolt-grouting supporting. This paper begins with the displacement, which is measured easily in practice. The method of back analysis is adopted to calculate the equivalent mechanics parameters of bolt-grouting rock mass. In process of back analysis three mechanics models is supposed which are homogeneous elastic model, inhomogeneous elastic model and elastic-plastic model and corresponding algorithm is established. What's more, this paper discusses the stability of inverse algorithm and copes the problem of back analysis parameter probably instable with QR decomposed algorithm and singular value decomposed algorithm, which will be a theoretical base to determine the mechanics parameter of bolt-grouting supporting rock mass and to estimate the surrounding rock stability. In a word, the method is established to estimate mechanics parameters of bolt-grouting jointed surrounding rock mass, and some significant results are obtained, which are of reference for actual project.


2014 ◽  
Vol 568-570 ◽  
pp. 1684-1689
Author(s):  
Zhong Han Chen

To solve the problem of underground tunneling face from the empty top, using FLAC3D analysis software, surrounding rock stability for coal roadway 2-1121 of Ganhe Coal Mine are analyzed in numerical calculation. (1) During the tunneling, distance drivage face head-on 0.5-1m at the roof of roadway deformation and destruction features are more obvious, the two sides of roadway are even more significant. (2) Ganhe Coal Mine roof deformation has been established with different empty the experience formula of the zenith distance, obtained Ganhe underground tunneling face reasonable empty zenith distance is 3.5m. (3) Temporary support can obviously reduce roof deformation, reduce thickness of plastic zone of the top, to improve the stability of surrounding rock tunneling faces.


2011 ◽  
Vol 181-182 ◽  
pp. 242-246 ◽  
Author(s):  
Bin Liu ◽  
Quan Sheng Liu

With the increase of mining depth,most coals in China have been deep mining stage. Compared to the shallow roadway, the characteristics of deformation-failure of surrounding rock show significant differences in the deep roadway, and the deep rock features of the surrounding rock are not considered in the traditional classification of roadway. So it is needed that systematical study on the surrounding rock classification for the stability evaluation of the deep roadway to meet the demand of the support design and the construction of the deep roadway in coal mine of China. The paper puts forward classification system of surrounding rock in deep roadway of coal mine according to on-the-spot geological investigation, rock ultrasonic testing, in-situ ground stress testing and comprehensive analysis on the surrounding rock stability of deep roadway in typical ore area.


2019 ◽  
Vol 136 ◽  
pp. 04023
Author(s):  
Ming Zhao ◽  
Ke Li ◽  
Hong Yan Guo ◽  
KaiCheng Hua

Based on the special geological conditions of a tunnel in Qingyuan section of Huizhou-Zhanzhou Expressway, FLAC3d numerical simulation software is used to simulate the rheological properties and instability of surrounding rock in large-section fully weathered sandstone section, and the stability and loss of surrounding rock are analyzed. The deformation of the dome and the face at steady state is analyzed. It is found that: 1) when the surrounding rock is in a stable state, the deformation curve of the dome is smooth. When the surrounding rock of the face is unstable, the front of the face appears ahead. Deformation should be first strengthened on the surrounding rock in front of the face. 2) The arched foot is an important part of the instability of the surrounding rock. In order to prevent the expansion of the collapsed part, the arched part should be reinforced. 3) In order to obtain the limit state of surrounding rock stability, the strength of surrounding rock is reduced, and the strength reduction coefficient corresponding to the displacement sudden point is taken as the safety factor of rock stability around the hole, and the stability safety coefficients of surrounding rock of each construction step are greater than 1.2. 4) The dynamic standard values of deformation control in the whole construction stage are obtained by analyzing the deformation curves of each data monitoring point with time in the corresponding time period of each construction step.


2013 ◽  
Vol 405-408 ◽  
pp. 402-405 ◽  
Author(s):  
Yun Jie Zhang ◽  
Tao Xu ◽  
Qiang Xu ◽  
Lin Bu

Based on the fluid-solid coupling theory, we study the stability of surrounding rock mass around underground oil storage in Huangdao, Shandong province, analyze the stress of the surrounding rock mass around three chambers and the displacement change of several key monitoring points after excavation and evaluate the stability of surrounding rock mass using COMSOL Multiphysics software. Research results show that the stress at both sides of the straight wall of cavern increases, especially obvious stress concentration forms at the corners of the cavern, and the surrounding rock mass moves towards the cavern after excavation. The stress and displacement of the surrounding rock mass will increase accordingly after setting the water curtains, but the change does not have a substantive impact on the stability of surrounding rock mass.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Mohammad Hossein Taherynia ◽  
Mojtaba Mohammadi ◽  
Rasoul Ajalloeian

Assessment of the stability of natural and artificial rock slopes is an important topic in the rock mechanics sciences. One of the most widely used methods for this purpose is the classification of the slope rock mass. In the recent decades, several rock slope classification systems are presented by many researchers. Each one of these rock mass classification systems uses different parameters and rating systems. These differences are due to the diversity of affecting parameters and the degree of influence on the rock slope stability. Another important point in rock slope stability is appraisal hazard and risk analysis. In the risk analysis, the degree of danger of rock slope instability is determined. The Lashotor pass is located in the Shiraz-Isfahan highway in Iran. Field surveys indicate that there are high potentialities of instability in the road cut slopes of the Lashotor pass. In the current paper, the stability of the rock slopes in the Lashotor pass is studied comprehensively with different classification methods. For risk analyses, we estimated dangerous area by use of the RocFall software. Furthermore, the dangers of falling rocks for the vehicles passing the Lashotor pass are estimated according to rockfall hazard rating system.


2018 ◽  
Vol 175 ◽  
pp. 03025
Author(s):  
Feng Zhou ◽  
Hongjian Jiang ◽  
Xiaorui Wang

The problem about the stability of tunnel surrounding rock is always an important research object of geotechnical engineering, and the right or wrong of the result from stability analysis on surrounding rock is related to success or failure of an underground project. In order to study the deformation rules of weak surrounding rock along with lateral pressure coefficient and burying depth varying under high geostress and discuss the dynamic variation trend of surrounding rock, the paper based on the application of finite difference software of FLAC3D, which can describe large deformation character of rock mass, analog simulation analysis of surrounding rock typical section of the class II was proceeded. Some conclusions were drawn as follows: (1) when burying depth is invariable, the displacements of tunnel surrounding rock have a trend of increasing first and then decreasing along with increasing of lateral pressure coefficient. The floor heave is the most sensitive to change of lateral pressure coefficient. The horizontal convergence takes second place. The vault subsidence is feeblish to change of lateral pressure coefficient. (2) The displacements of tunnel surrounding rock have some extend increase along with increasing of burying depth. The research conclusions are very effective in analyzing the stability of surrounding rock of Yunling tunnel. These are going to be a reference to tunnel supporting design and construction.


2018 ◽  
Vol 175 ◽  
pp. 04016
Author(s):  
NIU Yan ◽  
Ji Yafei ◽  
Wang Zhao

Tunnel excavation will lead to the immediate surrounding rock unloading caused by the surrounding rock stress release, the stability of the surrounding rock have a certain impact. In this paper, finite element software ANSYS and finite difference software FLAC3D are used to simulate the excavation and lining process of circular tunnel. The influence of excavation on the rock stability around circular tunnel is analyzed, and the effect of applying lining on the stability of surrounding rock is analyzed. Evaluation criteria selection hole displacement, stress and plastic area of three factors.


Sign in / Sign up

Export Citation Format

Share Document