scholarly journals Numerical Simulation on Large Deformation of Weak Rock Mass Tunnel Under High Geostress

2018 ◽  
Vol 175 ◽  
pp. 03025
Author(s):  
Feng Zhou ◽  
Hongjian Jiang ◽  
Xiaorui Wang

The problem about the stability of tunnel surrounding rock is always an important research object of geotechnical engineering, and the right or wrong of the result from stability analysis on surrounding rock is related to success or failure of an underground project. In order to study the deformation rules of weak surrounding rock along with lateral pressure coefficient and burying depth varying under high geostress and discuss the dynamic variation trend of surrounding rock, the paper based on the application of finite difference software of FLAC3D, which can describe large deformation character of rock mass, analog simulation analysis of surrounding rock typical section of the class II was proceeded. Some conclusions were drawn as follows: (1) when burying depth is invariable, the displacements of tunnel surrounding rock have a trend of increasing first and then decreasing along with increasing of lateral pressure coefficient. The floor heave is the most sensitive to change of lateral pressure coefficient. The horizontal convergence takes second place. The vault subsidence is feeblish to change of lateral pressure coefficient. (2) The displacements of tunnel surrounding rock have some extend increase along with increasing of burying depth. The research conclusions are very effective in analyzing the stability of surrounding rock of Yunling tunnel. These are going to be a reference to tunnel supporting design and construction.

2011 ◽  
Vol 243-249 ◽  
pp. 3588-3598 ◽  
Author(s):  
Zhi Min Chen ◽  
De An Zhao ◽  
Yun Yan Yu

Muzhailing tunnel of Lanyu railway is located in the western part of Qinling Mountain, its geological conditions are very complex. There is an extrusion fault, f16, in the Dazhangou inclined shaft, and the strata are consist of slate, sandston and carbonaceous slate. The measured geostress results showed that this location is in a very high level of geostress state, the maximum horizontal principal geostress is nearly vertical to Dazhangou inclined shaft and the measured horizontal lateral pressure coefficient is 3.79. Soft rock crushing, high geostress state, high horizontal lateral pressure coefficient and other factors led to the poor stability for the shaft. During the construction process of the shaft, the deformation characteristics are showed as strong horizontal deformation, rapid and large rate initial deformation, and long duration. According to rock lithology conditions, geostress conditions, supporting structure and dynamic construction, deformation characteristics of the shaft, the large horizontal deformation was caused by the interaction of high horizontal lateral pressure coefficient and poor geological conditions and other factors, but the main reasons of the large horizontal deformation were recognized as uneven vertical and horizontal load, extreme adverse load conditions of support structure, based on the theoretical and 3D numerical analysis. Through the analysis of the interaction of support structure and the surrounding rock, the smaller deformation in front of the working face during tunnel excavation is took place, the less stress release would be took place and the larger the ultimate load would be on the support structure. Tremendous stress was withstood by the arch crown, larger wall tensile stress was appeared at side wall, the support structure is in a poor stress state. This paper provides a theoretical basis for dynamic design and construction of the Dazhangou inclined shaft and Muzhailing tunnel.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4773
Author(s):  
Jianyu Li ◽  
Hong Li ◽  
Zheming Zhu ◽  
Ye Tao ◽  
Chun’an Tang

Geothermal power is being regarded as depending on techniques derived from hydrocarbon production in worldwide current strategy. However, it has artificially been developed far less than its natural potentials due to technical restrictions. This paper introduces the Enhanced Geothermal System based on Excavation (EGS-E), which is an innovative scheme of geothermal energy extraction. Then, based on cohesion-weakening-friction-strengthening model (CWFS) and literature investigation of granite test at high temperature, the initiation, propagation of excavation damaged zones (EDZs) under unloading and the EDZs scale in EGS-E closed to hydrostatic pressure state is studied. Finally, we have a discussion about the further evolution of surrounding rock stress and EDZs during ventilation is studied by thermal-mechanical coupling. The results show that the influence of high temperature damage on the mechanical parameters of granite should be considered; Lateral pressure coefficient affects the fracture morphology and scale of tunnel surrounding rock, and EDZs area is larger when the lateral pressure coefficient is 1.0 or 1.2; Ventilation of high temperature and high in-situ stress tunnel have a significant effect on the EDZs scale; Additional tensile stress is generated in the shallow of tunnel surrounding rock, and the compressive stress concentration transfers to the deep. EDZs experiences three expansion stages of slow, rapid and deceleration with cooling time, and the thermal insulation layer prolongs the slow growth stage.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Peng Wu ◽  
Yanlong Chen ◽  
Liang Chen ◽  
Xianbiao Mao ◽  
Wei Zhang

Based on the Mohr–Coulomb criterion, a new analytical solution of a circular opening under nonuniform pressure was presented, which considered rock dilatancy effect and elastic-brittle-plastic failure characteristics. In the plastic zone, the attenuation of Young’s modulus was considered using a radius-dependent model (RDM), and solution of the radius and radial displacement of plastic zone was obtained. The results show that many factors have important impact on the response of the surrounding rock, including lateral pressure coefficient, dilation coefficient, buried depth, and Young’s modulus attenuation. Under nonuniform pressure condition, the distribution of plastic zone and deformation around the opening show obvious nonuniform characteristic: with the increasing of lateral pressure coefficient, the range of plastic zone and deformation decrease gradually at side, while they increase at roof and floor, and the location of the maximum value of support and surrounding rock response curve transfers from side to roof. Based on the analytical results and engineering practice, an optimization method of support design was proposed for the circular opening under nonuniform pressure.


2015 ◽  
Vol 741 ◽  
pp. 138-142 ◽  
Author(s):  
Feng Hai Ma ◽  
Yan Wang ◽  
Zhi Bin Wang

Internal force and deformation of surrounding rock and supporting structure of the nonlinear research is the use of finite element software ADINA by ideal elastic-plastic constitutive model.Results show that the lateral pressure coefficient increased from 0 to 1, and even decrease sharply arch sedimentation of surrounding rock, side wall horizontal displacement towards the hole along the radial direction development gradually reduced to 0 and reverse to the hole, when the lateral pressure coefficient is less than 0.5, bolt axial force biggest change is not obvious, when lambda increases gradually, the largest bolt axial force significantly increased.


2011 ◽  
Vol 250-253 ◽  
pp. 1192-1195
Author(s):  
Xin Yu Wang ◽  
Zhu Shan Shao ◽  
Yu Ming Cui

During the construction of the deep-buried tunnels, high surrounding rock stress and the rockburst are the important factors affecting the stability of surrounding rock. Xiabandi hydraulic engineering is the key project in Tarim River basin. Due to the deep buried excavation, rockburst is particularly prominent and should be received adequate attention. According to the rockburst practice during construction, numerical analysis is adopted to study the stress characteristics along depth with the same lateral pressure coefficient. Furthermore, the rockburst tendency along the tunnel with different burying depth is investigated. The conclusion is of great value to guide the rockburst control during the tunnel design and construction.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1138
Author(s):  
Xiao Huang ◽  
Huaining Ruan ◽  
Chong Shi ◽  
Yang Kong

Stress arching effect during the excavation of broken surrounding rock in underground engineering has an important influence on the stability of surrounding rock after underground excavation. To determine the stress arching effect in horizontally layered jointed rock mass, the stress arching characteristics of surrounding rock mass after excavation is analyzed in this study by using a series of numerical tests. The formation mechanism of stress arch is revealed through a comparison of the stress characteristics of a voussoir beam structure and theoretical analysis of multi-block mechanical relationship of jointed rock mass. The method for determining the boundaries of a stress arching zone is proposed, and the influence of various factors on a stress arch is further discussed. Results show that after the excavation of horizontally layered jointed rock mass, the stress arch bunch (SAB) is formed in the lower strata above the cavern, and the global stress arch (GSA) is formed in the higher strata, both of which are symmetrical arch stress patterns. The SAB is the mechanical manifestation of the voussoir beam structure formed by several low-level sandstone layers, and the GSA is caused by the uneven displacement between blocks. Compared with the GSA, the SAB is more sensitive to various influencing factors. The extent of stress arching zone decreases with the increase of an internal friction angle of the joint, lateral pressure coefficient, and overburden depth. In addition, the joint spacing of rock strata is conducive to the development of a stress arch. Results can provide technical support for deformation control and the stability analysis of broken surrounding rock in underground engineering.


2011 ◽  
Vol 99-100 ◽  
pp. 790-795
Author(s):  
Ming Gao Zhang ◽  
Heng Bin Wu ◽  
Ze Ping He ◽  
Ting Qiang Zhou

Tunnel mechanics mainly depend on joints properties in layered and jointed rock mass, and most of the present methods adopted in numerical analysis are distinct element method. Combining to the Gaixiaba tunnel, considering the jointed properties such as dip angles, distances and lateral pressure coefficient, the finite element models are made in this paper. Results show that the plastic zone and total displacement presented a symmetric distribution with the axial of joints dip, and the plastic zone is very similar to the results suggested by Goodman. The dip angles, distances of joints and lateral pressure coefficient have significant effect on the tunnel mechanics.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Jianhao Liu ◽  
Caijin Xie ◽  
Junying Rao

This research aims to study the surrounding rock loosening pressure variation law of tunnel in the fold area. Based on the calculation method of surrounding rock loosening pressure for shallow tunnel, a new calculation model of the surrounding rock pressure was proposed for tunnel in the fold area; through this calculation model, the effects of tectonic stress (F), the angle ( φ 1 ) between tectonic stress and horizontal plane, tunnel buried depth (h), friction angle ( θ ), the multiple (k) between tectonic stress and rock mass gravity in the upper part of the tunnel, lateral pressure coefficient ( λ ), and tunnel midline offset (t) on tunnel surrounding rock loosening pressure in fold area are studied, respectively. Results show that in the anticline area, when φ 1 increases, the vertical loosening pressure (q) decreases; when q > 0, the surrounding rock is in the elastic deformation stage, and q decreases monotonously as F increases; when q < 0, the rock mass is in the initial stage of failure, and as F continues to increase, the number of internal cracks increases, the rock mass reaches its ultimate bearing capacity and then fails completely, and q increases linearly in this process; q decreases with the increase of θ and k; the greater k is, the easier it is to reach its bearing limit; the horizontal loosening pressure (e) increased monotonously with the increase of h and λ . The research process of surrounding rock loosening pressure of tunnel in the syncline area is similar to that of tunnel in the anticline area; q decreases with the increase of θ and λ ; q monotonically increases with F increasing.


2020 ◽  
Vol 13 (5) ◽  
pp. 42-49
Author(s):  
Zhiyu Chen ◽  
◽  
Zhiqiang Yin ◽  
Jucai Chang ◽  
Wenbao Shi ◽  
...  

The stability control of mining roadways is crucial in ensuring the safe and efficient mining of deep coal resources. Given the effect of mining stress on the working face, the support scheme of such roadways, which is designed based on the original in-situ stress parameters, often presents support-related problems. A mining roadway on the 1131 working face of Zhujidong Coal Mine in the Huainan mining area, China was taken as the engineering background of this study. To explore the influence of mining stress on the stability control of this roadway, the 2-dimensional (2D) Particle Flow Code (PFC) numerical simulation software was used to perform a simulation study on the stress distribution characteristics and deformation failure laws of the surrounding rocks under the change in the roadway lateral pressure coefficient caused by the mining stress. An improved support scheme that considers the influence of varying lateral pressure coefficient on the mining roadway was then proposed. Results show that when the lateral pressure coefficient increased from 1 to 1.4, the maximum principal stress (61.2 MPa) is observed at 2.9 m inside the roof of the surrounding rocks in the roadway. When the lateral pressure coefficient decreases from 1 to 0.4, the maximum principal stress (46.2 MPa) is observed at 2.2 m inside the surrounding rock of sidewalls of the roadway, and failure occurs. These findings suggest that the deformation and failure of surrounding rocks are affected regardless of the lateral pressure coefficient increase or decrease. On this basis, the lengths of the anchor bolts in the roof and sidewalls in the original support method are increased from 2,200 mm to 3,000 mm and 2,500 mm, respectively. The field monitoring results indicate that the improved support method mitigates the deformation and realizes the stability control of the roadway surrounding rocks. The findings of this study could provide a scientific basis for the parameter design of roadway support.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Yongbiao Lai ◽  
Shuo Li ◽  
Jiaqi Guo ◽  
Zhengguo Zhu ◽  
Xin Huang

Water inrush of tunnel is one of the most common geological disasters in the karst strata in China. Aiming at the rock mass with a quasi-masonry structure in the water-resistant strata between karst cavity with high pressure water and tunnel and the shortcomings of theoretical analysis, traditional numerical simulation, and physics model test for describing and reflecting this special structure of rock mass, a Discrete Element Method considering the fluid-solid coupling effect and structural characteristics of rock mass is employed to study the disaster process of water inrush and the evolutionary characteristics of catastrophe information like seepage pressure and displacement under condition of different karst water pressure, tunnel depth, and lateral pressure coefficient. Research results show the following: (1) the seepage pressure and displacement increase with the increase of kart water pressure. The seepage pressure demonstrates a decreasing state from top to bottom in water-resistant strata, and the time of arrival to a stable value for the seepage pressure shows the time effect. (2) The larger the tunnel depth, the greater the coalescence and distribution scope of fracture and the more likely the water inrush to occur in a short time. The stability of water-resistant strata decreases on the whole with the growth of tunnel depth. (3) The increase of lateral pressure coefficient can restrain the fracture development and strengthen stability. The fracture state is significantly influenced by a lateral pressure coefficient. The results of numerical simulation are consistent with those obtained by a model test. Research and analysis based on energy are a promising train of thought for studying the disaster process of water inrush in a karst tunnel.


Sign in / Sign up

Export Citation Format

Share Document