scholarly journals A Review on Human–AI Interaction in Machine Learning and Insights for Medical Applications

Author(s):  
Mansoureh Maadi ◽  
Hadi Akbarzadeh Khorshidi ◽  
Uwe Aickelin

Objective: To provide a human–Artificial Intelligence (AI) interaction review for Machine Learning (ML) applications to inform how to best combine both human domain expertise and computational power of ML methods. The review focuses on the medical field, as the medical ML application literature highlights a special necessity of medical experts collaborating with ML approaches. Methods: A scoping literature review is performed on Scopus and Google Scholar using the terms “human in the loop”, “human in the loop machine learning”, and “interactive machine learning”. Peer-reviewed papers published from 2015 to 2020 are included in our review. Results: We design four questions to investigate and describe human–AI interaction in ML applications. These questions are “Why should humans be in the loop?”, “Where does human–AI interaction occur in the ML processes?”, “Who are the humans in the loop?”, and “How do humans interact with ML in Human-In-the-Loop ML (HILML)?”. To answer the first question, we describe three main reasons regarding the importance of human involvement in ML applications. To address the second question, human–AI interaction is investigated in three main algorithmic stages: 1. data producing and pre-processing; 2. ML modelling; and 3. ML evaluation and refinement. The importance of the expertise level of the humans in human–AI interaction is described to answer the third question. The number of human interactions in HILML is grouped into three categories to address the fourth question. We conclude the paper by offering a discussion on open opportunities for future research in HILML.

Author(s):  
Samantha Krening ◽  
Karen M. Feigh

A goal of interactive machine learning (IML) is to create robots or intelligent agents that can be easily taught how to perform tasks by individuals with no specialized training. To achieve that goal, researchers and designers must understand how certain design decisions impact the human’s experience of teaching the agent, such as influencing the agent’s perceived intelligence. We posit that the type of feedback a robot can learn from affects the perceived intelligence of the robot, similar to its physical appearance. This study investigated two methods of natural language instruction: critique and action advice. We conducted a human-in-the-loop experiment in which people trained two agents with different teaching methods but, unknown to each participant, the same underlying machine learning algorithm. The results show an agent that learns from binary good/bad critique is perceived as less intelligent than an agent that can learn from action instructions, even if the underlying machine learning agent is the same. In addition to the complexity of the input, other design characteristics we found that influence the agent’s perceived intelligence are: compliance, responsiveness, effort, transparency, and robustness.


2019 ◽  
Vol 28 (2) ◽  
pp. 121-134 ◽  
Author(s):  
ANDREAS HOLZINGER ◽  
MARKUS PLASS ◽  
KATHARINA HOLZINGER ◽  
GLORIA CERASELA CRIS¸AN ◽  
CAMELIA-M. PINTEA ◽  
...  

The ultimate goal of the Machine Learning (ML) community is to develop algorithms that can automatically learn from data, to extract knowledge and to make decisions without any human intervention. Specifically, automatic Machine Learning (aML) approaches show impressive success, e.g. in speech/image recognition or autonomous drive and smart car industry. Recent results even demonstrate intriguingly that deep learning applied for automatic classification of skin lesions is on par with the performance of dermatologists, yet outperforms the average human efficiency. As human perception is inherently limited to 3D environments, such approaches can discover patterns, e.g. that two objects are similar, in arbitrarily high-dimensional spaces what no human is able to do. Humans can deal simultaneously only with limited amounts of data, whilst “big data” is not only beneficial but necessary for aML. However, in health informatics, there are few data sets; aML approaches often suffer from insufficient training samples. Many problems are computationally hard, e.g. subspace clustering, k-anonymization, or protein folding. Here, interactive machine learning (iML) could be successfully used, as a human-in-the-loop contributes to reduce a huge search space through heuristic selection of suitable samples. This can reduce the complexity of NP-hard problems through the knowledge brought in by a human agent involved into the learning algorithm. A huge motivation for iML is that standard black-box approaches lack transparency, hence do not foster trust and acceptance of ML among end-users. Most of all, rising legal and privacy aspects, e.g. the European General Data Protection Regulations (GDPR) make black-box approaches difficult to use, because they often are not able to explain why a decision has been made, e.g. why two objects are similar. All these reasons motivate the idea to open the black-box to a glass-box. In this paper, we present some experiments to demonstrate the effectiveness of the iML human-in-the-loop model, in particular when using a glass-box instead of a black-box model and thus enabling a human directly to interact with a learning algorithm. We selected the Ant Colony System (ACS) algorithm, and applied it on the Traveling Salesman Problem (TSP). The TSP-problem is a good example, because it is of high relevance for health informatics as for example on protein folding problem, thus of enormous importance for fostering cancer research. Finally, from studies of learning from observation, i.e. of how humans extract so much from so little data, fundamental ML-research also may benefit.


2020 ◽  
Author(s):  
Sina Faizollahzadeh Ardabili ◽  
Amir Mosavi ◽  
Pedram Ghamisi ◽  
Filip Ferdinand ◽  
Annamaria R. Varkonyi-Koczy ◽  
...  

Several outbreak prediction models for COVID-19 are being used by officials around the world to make informed-decisions and enforce relevant control measures. Among the standard models for COVID-19 global pandemic prediction, simple epidemiological and statistical models have received more attention by authorities, and they are popular in the media. Due to a high level of uncertainty and lack of essential data, standard models have shown low accuracy for long-term prediction. Although the literature includes several attempts to address this issue, the essential generalization and robustness abilities of existing models needs to be improved. This paper presents a comparative analysis of machine learning and soft computing models to predict the COVID-19 outbreak as an alternative to SIR and SEIR models. Among a wide range of machine learning models investigated, two models showed promising results (i.e., multi-layered perceptron, MLP, and adaptive network-based fuzzy inference system, ANFIS). Based on the results reported here, and due to the highly complex nature of the COVID-19 outbreak and variation in its behavior from nation-to-nation, this study suggests machine learning as an effective tool to model the outbreak. This paper provides an initial benchmarking to demonstrate the potential of machine learning for future research. Paper further suggests that real novelty in outbreak prediction can be realized through integrating machine learning and SEIR models.


2020 ◽  
Vol 14 ◽  
Author(s):  
Meghna Dhalaria ◽  
Ekta Gandotra

Purpose: This paper provides the basics of Android malware, its evolution and tools and techniques for malware analysis. Its main aim is to present a review of the literature on Android malware detection using machine learning and deep learning and identify the research gaps. It provides the insights obtained through literature and future research directions which could help researchers to come up with robust and accurate techniques for classification of Android malware. Design/Methodology/Approach: This paper provides a review of the basics of Android malware, its evolution timeline and detection techniques. It includes the tools and techniques for analyzing the Android malware statically and dynamically for extracting features and finally classifying these using machine learning and deep learning algorithms. Findings: The number of Android users is expanding very fast due to the popularity of Android devices. As a result, there are more risks to Android users due to the exponential growth of Android malware. On-going research aims to overcome the constraints of earlier approaches for malware detection. As the evolving malware are complex and sophisticated, earlier approaches like signature based and machine learning based are not able to identify these timely and accurately. The findings from the review shows various limitations of earlier techniques i.e. requires more detection time, high false positive and false negative rate, low accuracy in detecting sophisticated malware and less flexible. Originality/value: This paper provides a systematic and comprehensive review on the tools and techniques being employed for analysis, classification and identification of Android malicious applications. It includes the timeline of Android malware evolution, tools and techniques for analyzing these statically and dynamically for the purpose of extracting features and finally using these features for their detection and classification using machine learning and deep learning algorithms. On the basis of the detailed literature review, various research gaps are listed. The paper also provides future research directions and insights which could help researchers to come up with innovative and robust techniques for detecting and classifying the Android malware.


2020 ◽  
Author(s):  
Mikołaj Morzy ◽  
Bartłomiej Balcerzak ◽  
Adam Wierzbicki ◽  
Adam Wierzbicki

BACKGROUND With the rapidly accelerating spread of dissemination of false medical information on the Web, the task of establishing the credibility of online sources of medical information becomes a pressing necessity. The sheer number of websites offering questionable medical information presented as reliable and actionable suggestions with possibly harmful effects poses an additional requirement for potential solutions, as they have to scale to the size of the problem. Machine learning is one such solution which, when properly deployed, can be an effective tool in fighting medical disinformation on the Web. OBJECTIVE We present a comprehensive framework for designing and curating of machine learning training datasets for online medical information credibility assessment. We show how the annotation process should be constructed and what pitfalls should be avoided. Our main objective is to provide researchers from medical and computer science communities with guidelines on how to construct datasets for machine learning models for various areas of medical information wars. METHODS The key component of our approach is the active annotation process. We begin by outlining the annotation protocol for the curation of high-quality training dataset, which then can be augmented and rapidly extended by employing the human-in-the-loop paradigm to machine learning training. To circumvent the cold start problem of insufficient gold standard annotations, we propose a pre-processing pipeline consisting of representation learning, clustering, and re-ranking of sentences for the acceleration of the training process and the optimization of human resources involved in the annotation. RESULTS We collect over 10 000 annotations of sentences related to selected subjects (psychiatry, cholesterol, autism, antibiotics, vaccines, steroids, birth methods, food allergy testing) for less than $7 000 employing 9 highly qualified annotators (certified medical professionals) and we release this dataset to the general public. We develop an active annotation framework for more efficient annotation of non-credible medical statements. The results of the qualitative analysis support our claims of the efficacy of the presented method. CONCLUSIONS A set of very diverse incentives is driving the widespread dissemination of medical disinformation on the Web. An effective strategy of countering this spread is to use machine learning for automatically establishing the credibility of online medical information. This, however, requires a thoughtful design of the training pipeline. In this paper we present a comprehensive framework of active annotation. In addition, we publish a large curated dataset of medical statements labelled as credible, non-credible, or neutral.


2020 ◽  
Vol 34 (2) ◽  
pp. 271-278
Author(s):  
Wanyi Zhang ◽  
Andrea Passerini ◽  
Fausto Giunchiglia

Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1611
Author(s):  
María Cora Urdaneta-Ponte ◽  
Amaia Mendez-Zorrilla ◽  
Ibon Oleagordia-Ruiz

Recommendation systems have emerged as a response to overload in terms of increased amounts of information online, which has become a problem for users regarding the time spent on their search and the amount of information retrieved by it. In the field of recommendation systems in education, the relevance of recommended educational resources will improve the student’s learning process, and hence the importance of being able to suitably and reliably ensure relevant, useful information. The purpose of this systematic review is to analyze the work undertaken on recommendation systems that support educational practices with a view to acquiring information related to the type of education and areas dealt with, the developmental approach used, and the elements recommended, as well as being able to detect any gaps in this area for future research work. A systematic review was carried out that included 98 articles from a total of 2937 found in main databases (IEEE, ACM, Scopus and WoS), about which it was able to be established that most are geared towards recommending educational resources for users of formal education, in which the main approaches used in recommendation systems are the collaborative approach, the content-based approach, and the hybrid approach, with a tendency to use machine learning in the last two years. Finally, possible future areas of research and development in this field are presented.


Author(s):  
Chunyan Ji ◽  
Thosini Bamunu Mudiyanselage ◽  
Yutong Gao ◽  
Yi Pan

AbstractThis paper reviews recent research works in infant cry signal analysis and classification tasks. A broad range of literatures are reviewed mainly from the aspects of data acquisition, cross domain signal processing techniques, and machine learning classification methods. We introduce pre-processing approaches and describe a diversity of features such as MFCC, spectrogram, and fundamental frequency, etc. Both acoustic features and prosodic features extracted from different domains can discriminate frame-based signals from one another and can be used to train machine learning classifiers. Together with traditional machine learning classifiers such as KNN, SVM, and GMM, newly developed neural network architectures such as CNN and RNN are applied in infant cry research. We present some significant experimental results on pathological cry identification, cry reason classification, and cry sound detection with some typical databases. This survey systematically studies the previous research in all relevant areas of infant cry and provides an insight on the current cutting-edge works in infant cry signal analysis and classification. We also propose future research directions in data processing, feature extraction, and neural network classification fields to better understand, interpret, and process infant cry signals.


Sign in / Sign up

Export Citation Format

Share Document