scholarly journals Evolution of Singlet Oxygen by Activating Peroxydisulfate and Peroxymonosulfate: A Review

Author(s):  
Guangfeng Xiao ◽  
Tiantian Xu ◽  
Muhammad Faheem ◽  
Yanxing Xi ◽  
Ting Zhou ◽  
...  

Advanced oxidation processes (AOPs) based on peroxydisulfate (PDS) or peroxymonosulfate (PMS) activation have attracted much research attention in the last decade for the degradation of recalcitrant organic contaminants. Sulfate (SO4•−) and hydroxyl (•OH) radicals are most frequently generated from catalytic PDS/PMS decomposition by thermal, base, irradiation, transition metals and carbon materials. In addition, increasingly more recent studies have reported the involvement of singlet oxygen (1O2) during PDS/PMS-based AOPs. Typically, 1O2 can be produced either along with SO4•− and •OH or discovered as the dominant reactive oxygen species (ROSs) for pollutants degradation. This paper reviews recent advances in 1O2 generation during PDS/PMS activation. First, it introduces the basic chemistry of 1O2, its oxidation properties and detection methodologies. Furthermore, it elaborates different activation strategies/techniques, including homogeneous and heterogeneous systems, and discusses the possible reaction mechanisms to give an overview of the principle of 1O2 production by activating PDS/PMS. Moreover, although 1O2 has shown promising features such as high degradation selectivity and anti-interference capability, its production pathways and mechanisms remain controversial in the present literatures. Therefore, this study identifies the research gaps and proposes future perspectives in the aspects of novel catalysts and related mechanisms.

2021 ◽  
Author(s):  
Pavel Krystynik

Considering the nature of organic contaminants in water, methods of their oxidative decomposition seem to be most appropriate for their removal from contaminated water. There are a lot of methods of chemical oxidation, however, Advanced Oxidation Processes (AOPs) seem to be the most suitable technologies for organic contaminants removal. AOPs belong to a group of processes that efficiently oxidize organic compounds towards harmless inorganic products such as water or carbon dioxide. The processes have shown great potential in treatment of pollutants of low or high concentrations and have found applications for various types of contamination. The hydroxyl radical (•OH) is oxidizing agent used at AOPs to drive contaminant decomposition. It is a powerful, non-selective chemical oxidant, which reacts very rapidly with most organic compounds. Another strong oxidizing agent, singlet oxygen, can be generated by photosensitization of phthalocyanines. Phthalocyanines are molecules based on pyrrol structures connected mainly with methionine groups (–CH=) having a metallic central atom. Illumination upon specific wavelengths initiates formation of singlet oxygen that attack organic contaminants.


The Analyst ◽  
2020 ◽  
Author(s):  
Zhengrong Niu ◽  
Hong-Hong Rao ◽  
Xin Xue ◽  
Mingyue Luo ◽  
Xiuhui Liu ◽  
...  

Fenton-like reaction systems have been proven to be more efficient as the powerful promoters in advanced oxidation processes (AOPs) due to their resultantly generated reactive oxygen species (ROS) such as...


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1680
Author(s):  
Marta A. Andrade ◽  
Luísa M. D. R. S. Martins

The selective oxidation of styrene under heterogeneous catalyzed conditions delivers environmentally friendly paths for the production of benzaldehyde, an important intermediate for the synthesis of several products. The present review explores heterogeneous catalysts for styrene oxidation using a variety of metal catalysts over the last decade. The use of several classes of supports is discussed, including metal–organic frameworks, zeolites, carbon materials and silicas, among others. The studied catalytic systems propose as most used oxidants tert-butyl hydroperoxide, and hydrogen peroxide and mild reaction conditions. The reaction mechanism proceeds through the generation of an intermediate reactive metal–oxygen species by catalyst-oxidant interactions. Overall, most of the studies highlight the synergetic effects among the metal and support for the activity and selectivity enhancement.


2003 ◽  
Vol 68 (11) ◽  
pp. 2219-2230 ◽  
Author(s):  
Gabriel Čík ◽  
Milada Hubinová ◽  
František Šeršeň ◽  
Jozef Krištín ◽  
Monika Antošová

Degradation of 4-chlorophenol by reactive oxygen species was studied, the latter being generated by photo-assisted reactions of thiophene oligomers, synthesized in channels of the Na-ZSM-5 zeolite. The photoreaction was carried out in an aqueous suspension of photocatalyst, irradiated with visible light (λ > 400 nm). The spin-trapping method was used to detect the generated •OH radicals. The main products of the photodecomposition of 4-chlorophenol were found to be phenol, hydroquinone and maleic acid.


2007 ◽  
Vol 2 ◽  
pp. 117739010700200 ◽  
Author(s):  
Tamara Zoltan ◽  
Franklin Vargas ◽  
Carla Izzo

We have determined and quantified spectrophotometrically the capacity of producing reactive oxygen species (ROS) as 1O2 during the photolysis with UV-A light of 5 new synthesized naphthyl ester derivates of well-known quinolone antibacterials (nalidixic acid (1), cinoxacin (2), norfloxacin (3), ciprofloxacin (4) and enoxacin (5)). The ability of the naphthyl ester derivatives (6-10) to generate singlet oxygen were detecting and for the first time quantified by the histidine assay, a sensitive, fast and inexpensive method. The following tendency of generation of singlet oxygen was observed: compounds 7 >10 > 6 > 8 > 9 >> parent drugs 1-5.


1993 ◽  
Vol 264 (6) ◽  
pp. C1395-C1400 ◽  
Author(s):  
L. E. Costa ◽  
S. Llesuy ◽  
A. Boveris

The spontaneous in situ liver chemiluminescence of female rats submitted to 4,400 m (simulated altitude) for 2 mo and of their corresponding controls at sea level was determined as an approach to the measurement of the intracellular steady-state concentrations of singlet oxygen and oxygen free radicals. Spontaneous liver chemiluminescence was decreased by approximately 40% in hypoxic rats, whereas CCl4-induced chemiluminescence was unchanged. Liver mitochondria isolated from hypoxic rats showed a 53% decreased rate of H2O2 production and an increased content of cytochrome b (36%), with normal content of cytochromes c1, c, and a-a3. Superoxide dismutase showed a 26% decrease in activity, whereas catalase and glutathione peroxidase activities were not significantly decreased by this extent of hypoxia. Cytochrome P-450 and glutathione contents were unchanged. There were no significant differences in the hydroperoxide-initiated chemiluminescence (an estimation of tissue chain-breaker antioxidants) of homogenates, mitochondria, and microsomes. Results suggest that in chronic hypoxia there is a lower rate of generation of active oxygen species in liver, leading to a decreased steady-state concentration of singlet oxygen.


ACS Catalysis ◽  
2017 ◽  
Vol 7 (10) ◽  
pp. 7267-7273 ◽  
Author(s):  
Wenting Wu ◽  
Qinggang Zhang ◽  
Xiaokai Wang ◽  
Congcong Han ◽  
Xiaodong Shao ◽  
...  

2010 ◽  
Vol 62 (2) ◽  
pp. 273-278 ◽  
Author(s):  
Daniel Jančula ◽  
Lucie Bláhová ◽  
Marie Karásková ◽  
Blahoslav Maršálek

Phthalocyanines (Pcs) are promising photosensitizers for use in various branches of science and industry. In the presence of visible light and diatomic oxygen, phthalocyanines can react to produce singlet oxygen, a member of reactive oxygen species able to damage different molecules and tissues. The aim of this study was to investigate the ability of phthalocyanines to degrade natural toxins in the presence of visible light. As the representative of hardly degradable toxins, a group of cyanobacterial peptide toxins—microcystin-LR—was chosen for this study. According to our results, phthalocyanines are able to degrade 61,5% of microcystins within a 48-hour incubation (38% of microcystins was degraded after 24 h and 24% after 12 h of incubation). Although other oxidants like hydrogen peroxide or ozone are able to degrade microcystins within several hours, we assume that by optimizing the spectrum emitted by light source and by changing the absorption characteristics of Pcs, microcystins degradation by phthalocyanines could be more effective in the near future.


Sign in / Sign up

Export Citation Format

Share Document