scholarly journals Significant Decrease in Heavy Metals in Surface Sediment after Ten-Year Sustainable Development in Huaxi Reservoir Located in Guiyang, Southwestern China

Author(s):  
Xiangyang Zhou ◽  
Kejia Zhou ◽  
Rong Liu ◽  
Shanggui Sun ◽  
Xinqiang Guo ◽  
...  

In the Karst area of southwestern China, the heavy metals in the sediment of a reservoir are determined by both human activities and the high background values. Thus, this study explores the change of heavy metals in surface sediment after ten-year sustainable development in the upstream areas of a reservoir, Huaxi Reservoir, located in Guiyang of southwestern China, then evaluates the risk of these heavy metals to water environment systematically and finally identifies the sources in both 2019 and 2009. The results reveal that all of the measured heavy metals decrease dramatically and their spatial distributions change from the increase-decrease pattern to decrease-increase pattern, implying different locations of main source input. The risk indices based on the total or average content and relative or reference values have decreased to the lowest level. However, those indices calculated from the absolute content of each metalloid still show a low or a moderate risk because of the high background value, such as As and Cr. Moreover, although only one main source of heavy metals is identified in both 2019 and 2009, the risk from human activities still cannot be neglected because agricultural production and infrastructure construction would promote the weathering of soil and then these heavy metals from the soil will be brought into the reservoir with the rainfall-runoff process. The high background value of specific heavy metals, e.g., As and Cr would still exert some challenges to the water environment protections because the non-point source input of heavy metal cannot be controlled easily by promulgating a series of bans. These results provide important reference for creating the policies of water environment protection, especially in some Karst area of southwestern China that exhibits high background value of heavy metals.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Qiang Li ◽  
Yadan Huang ◽  
Shenglin Xin ◽  
Zhongyi Li

AbstractAlthough bacterioplankton play an important role in aquatic ecosystems, less is known about bacterioplankton assemblages from subtropical karst reservoirs of southwestern China with contrasting trophic status. Here, 16S rRNA gene next-generation sequencing coupled with water chemistry analysis was applied to compare the bacterioplankton communities from a light eutrophic reservoir, DL Reservoir, and a mesotrophic reservoir, WL Reservoir, in subtropical karst area of southwestern China. Our findings indicated that Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, Cyanobacteria and Verrucomicrobia dominated bacterioplankton community with contrasting relative frequency in the two subtropical karst reservoirs. Proteobacteria and Bacteroidetes were the core communities, which played important roles in karst biogeochemical cycles. Though WT, TN and DOC play the decisive role in assembling karst aquatic bacterioplankton, trophic status exerted significantly negative direct effects on bacterioplankton community composition and alpha diversity. Due to contrasting trophic status in the two reservoirs, the dominant taxa such as Enterobacter, Clostridium sensu stricto, Candidatus Methylacidiphilum and Flavobacteriia, that harbor potential functions as valuable and natural indicators of karst water health status, differed in DL Reservoir and WL Reservoir.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 894
Author(s):  
Panfeng Liu ◽  
Chaojie Zheng ◽  
Meilan Wen ◽  
Xianrong Luo ◽  
Zhiqiang Wu ◽  
...  

The study deals with the spatio-temporal distribution of heavy metals in the sediments of Chagan lake, Northeast China. The pollution history of heavy metals is studied simultaneously through the 210Pb dating method by analyzing the characteristic of As, Hg, Cd, Cr, Ni, Cu, Pb, and Zn concentration-depth profiles. The potential ecological risk index (RI) and geo-accumulation index (Igeo) were used to evaluate the contamination degree. Principal component analysis (PCA), based on the logarithmic transformation and isometric log-ratio (ilr) transformed data, was applied with the aim of identifying the sources of heavy metals. The element concentrations show that the heavy metals are enriched in the surface sediment and sediment core with a varying degree, which is higher in the surficial residue. The results of Igeo indicate that the Cd and Hg in the surface sediment have reached a slightly contaminated level while other elements, uncontaminated. The results of RI show that the study area can be classified as an area with moderate ecological risk in which Cd and Hg mostly contribute to the overall risk. For the sediment core, the 210Pb dating results accurately reflect the sedimentary history over 153 years. From two evaluation indices (RI and Igeo) calculated by element concentration, there is no contamination, and the potential ecological risk is low during this period. The comparative study between raw and ilr transformed data shows that the closure effect of the raw data can be eliminated by ilr transformation. After that, the components obtained by robust principal component analysis (RPCA) are more representative than those obtained by PCA, both based on ilr transformed dataset, after eliminating the influence of outliers. Based on ilr transformed data with RPCA, three primary sources could be inferred: Cr, Ni, As, Zn, and Cu are mainly derived from natural sources; the main source of Cd and Hg are associated with agricultural activities and energy development; as for Pb, it originated from traffic and coal-burning activities, which is consistent with the fact that the development of tourism, fishery, and agriculture industries has led to the continuous increasing levels of anthropogenic Pb in Chagan Lake. The summarized results and conclusions will undoubtedly enhance the governmental awareness of heavy metal pollution and facilitate appropriate pollution control measures in Chagan Lake.


2021 ◽  
Vol 9 (5) ◽  
pp. 473
Author(s):  
Magda M. Abou El-Safa ◽  
Mohamed Gad ◽  
Ebrahem M. Eid ◽  
Ashwaq M. Alnemari ◽  
Mohammed H. Almarshadi ◽  
...  

The present study focuses on the risk assessment of heavy metal contamination in aquatic ecosystems by evaluating the current situation of heavy metals in seven locations (North Amer El Bahry, Amer, Bakr, Ras Gharib, July Water Floud, Ras Shokeir, and El Marageen) along the Suez Gulf coast that are well-known representative sites for petroleum activities in Egypt. One hundred and forty-six samples of surface sediments were carefully collected from twenty-seven profiles in the intertidal and surf zone. The hydrochemical parameters, such as pH and salinity (S‰), were measured during sample collection. The mineralogy study was carried out by an X-ray diffractometer (XRD), and the concentrations of Al, Mn, Fe, Cr, Cu, Co, Zn, Cd, and Pb were determined using inductively coupled plasma mass spectra (ICP-MS). The ecological risks of heavy metals were assessed by applying the contamination factor (CF), enrichment factor (EF), geoaccumulation index (Igeo), pollution load index (PLI), and potential ecological risk index (RI). The mineralogical composition mainly comprised quartz, dolomites, calcite, and feldspars. The average concentrations of the detected heavy metals, in descending order, were Al > Fe > Mn > Cr > Pb > Cu > Zn > Ni > Co > Cd. A non-significant or negative relationship between the heavy metal concentration in the samples and their textural grain size characteristics was observed. The coastal surface sediment samples of the Suez Gulf contained lower concentrations of heavy metals than those published for other regions in the world with petroleum activities, except for Al, Mn, and Cr. The results for the CF, EF, and Igeo showed that Cd and Pb have severe enrichment in surface sediment and are derived from anthropogenic sources, while Al, Mn, Fe, Cr, Co, Ni, Cu, and Zn originate from natural sources. By comparison, the PLI and RI results indicate that the North Amer El Bahry and July Water Floud are considered polluted areas due to their petroleum activities. The continuous monitoring and assessment of pollutants in the Suez Gulf will aid in the protection of the environment and the sustainability of resources.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 891
Author(s):  
Qian Zhang ◽  
Guilin Han ◽  
Xingliang Xu

Human agricultural activities have resulted in widespread land degradation and soil contamination in the karst areas. However, the effects of reforestation after agricultural abandonment on the mobility risks and contamination of heavy metals have been rarely reported. In the present study, six soil profiles were selected from cropland and abandoned cropland with reforestation in the Puding karst regions of Southwest China. The Community Bureau of Reference (BCR) sequential extraction method was used to evaluate the compositions of different chemical fractions of soil heavy metals, including Fe, Mn, Cr, Zn, Ni, and Cd. The total contents of Cr, Ni, Zn, Cd, and Mn in the croplands were significantly higher than those in the abandoned croplands. For all soils, Cr, Ni, Zn, and Fe were mainly concentrated in the residual fractions (>85%), whereas Mn and Cd were mostly observed in the non-residual fractions (>65%). The non-residual fractions of Cd, Cr, Ni, and Zn in the croplands were higher than those in the abandoned croplands. These results indicated that the content and mobility of soil heavy metals decreased after reforestation. The individual contamination factor (ICF) and risk assessment code (RAC) showed that Cd contributed to considerable contamination of karst soils. The global contamination factor (GCF) and potential ecological risk index (RI) suggested low contamination and ecological risk of the investigated heavy metals in the croplands, moreover they can be further reduced after reforestation.


Author(s):  
Tan Kar Soon ◽  
Delta Jenetty Denil ◽  
Julian Ransangan

AbstractThe current study was conducted to estimate the baseline concentration of heavy metals in the surface sediment of Marudu Bay. Environmental parameters were measured at the seafloor and samples of the surface sediment were collected at monthly intervals for the period of 12 months. The organic content, total N, total P and concentration of 16 trace metals in the surface sediment were analyzed. The baseline concentration of metals was estimated by geochemical normalization. Anthropogenic inputs of metals were then estimated by calculating the enrichment factor for each element. The result demonstrated that the C/N ratio of sediment at Marudu Bay varies from 15 to 342, which indicates the dominance of terrestrial organic matter. The baseline concentration of V, Fe, Mn, Zn, Ti, Rb and Sr were 26.74 mg kg


2021 ◽  
Vol 25 (5) ◽  
pp. 52-57
Author(s):  
S.I. Alekseeva ◽  
Zh.M. Okhlopkova

The methods of biotesting of the aquatic environment based on the representative of the duckweed family (lat. Lemnaceae) greater duckweed (Spirodela polyrhiza (L.) Schleid) were considered. A review is presented on the use of greater duckweed as a model object in biological testing, in partic-ular, when exposed to heavy metals salts. When cultivated Spirodela polyrhiza with the addition of heavy metals salts, a change in the growth and development of plants in the experienced line of plants was revealed, as well as a decrease in the content of chlorophyll a and b.


Sign in / Sign up

Export Citation Format

Share Document