scholarly journals Clinical Concept Extraction with Lexical Semantics to Support Automatic Annotation

Author(s):  
Asim Abbas ◽  
Muhammad Afzal ◽  
Jamil Hussain ◽  
Taqdir Ali ◽  
Hafiz Syed Muhammad Bilal ◽  
...  

Extracting clinical concepts, such as problems, diagnosis, and treatment, from unstructured clinical narrative documents enables data-driven approaches such as machine and deep learning to support advanced applications such as clinical decision-support systems, the assessment of disease progression, and the intelligent analysis of treatment efficacy. Various tools such as cTAKES, Sophia, MetaMap, and other rules-based approaches and algorithms have been used for automatic concept extraction. Recently, machine- and deep-learning approaches have been used to extract, classify, and accurately annotate terms and phrases. However, the requirement of an annotated dataset, which is labor-intensive, impedes the success of data-driven approaches. A rule-based mechanism could support the process of annotation, but existing rule-based approaches fail to adequately capture contextual, syntactic, and semantic patterns. This study intends to introduce a comprehensive rule-based system that automatically extracts clinical concepts from unstructured narratives with higher accuracy and transparency. The proposed system is a pipelined approach, capable of recognizing clinical concepts of three types, problem, treatment, and test, in the dataset collected from a published repository as a part of the I2b2 challenge 2010. The system’s performance is compared with that of three existing systems: Quick UMLS, BIO-CRF, and the Rules (i2b2) model. Compared to the baseline systems, the average F1-score of 72.94% was found to be 13% better than Quick UMLS, 3% better than BIO CRF, and 30.1% better than the Rules (i2b2) model. Individually, the system performance was noticeably higher for problem-related concepts, with an F1-score of 80.45%, followed by treatment-related concepts and test-related concepts, with F1-scores of 76.06% and 55.3%, respectively. The proposed methodology significantly improves the performance of concept extraction from unstructured clinical narratives by exploiting the linguistic and lexical semantic features. The approach can ease the automatic annotation process of clinical data, which ultimately improves the performance of supervised data-driven applications trained with these data.

Author(s):  
Réka Hollandi ◽  
Ákos Diósdi ◽  
Gábor Hollandi ◽  
Nikita Moshkov ◽  
Péter Horváth

AbstractAnnotatorJ combines single-cell identification with deep learning and manual annotation. Cellular analysis quality depends on accurate and reliable detection and segmentation of cells so that the subsequent steps of analyses e.g. expression measurements may be carried out precisely and without bias. Deep learning has recently become a popular way of segmenting cells, performing unimaginably better than conventional methods. However, such deep learning applications may be trained on a large amount of annotated data to be able to match the highest expectations. High-quality annotations are unfortunately expensive as they require field experts to create them, and often cannot be shared outside the lab due to medical regulations.We propose AnnotatorJ, an ImageJ plugin for the semi-automatic annotation of cells (or generally, objects of interest) on (not only) microscopy images in 2D that helps find the true contour of individual objects by applying U-Net-based pre-segmentation. The manual labour of hand-annotating cells can be significantly accelerated by using our tool. Thus, it enables users to create such datasets that could potentially increase the accuracy of state-of-the-art solutions, deep learning or otherwise, when used as training data.


2020 ◽  
Author(s):  
Ben Geoffrey

The rise in application of methods of data science and machine/deep learning in chemical and biological sciences must be discussed in the light of the fore-running disciplines of bio/chem-informatics and computational chemistry and biology which helped in the accumulation ofenormous research data because of which successful application of data-driven approaches have been made possible now. Many of the tasks and goals of Ab initio methods in computational chemistry such as determination of optimized structure and other molecular properties of atoms, molecules, and compounds are being carried out with much lesser computational cost with data-driven machine/deep learning-based predictions. One observes a similar trend in computational biology, wherein, data-driven machine/deep learning methods are being proposed to predict the structure and dynamical of interactions of biological macromolecules such as proteins and DNA over computational expensive molecular dynamics based methods. In the cheminformatics space,one sees the rise of deep neural network-based methods that have scaled traditional structure-property/structure-activity to handle big data to design new materials with desired property and drugs with required activity in deep learning-based de novo molecular design methods. In thebioinformatics space, data-driven machine/deep learning approaches to genomic and proteomic data have led to interesting applications in fields such as precision medicine, prognosis prediction, and more. Thus the success story of the application of data science, machine/deep learning, andartificial intelligence to the disciple of chem/bio-informatics, and computational chemistry and biology has been told in light of how these fore-running disciplines had created huge repositories of data for data-driven approaches to be successful in these disciplines.


2019 ◽  
Author(s):  
Fransiskus Xaverius Ivan ◽  
Chee Keong Kwoh

AbstractBackgroundInfluenza A virus (IAV) poses threats to human health and life. Many individual studies have been carried out in mice to uncover the viral factors responsible for the virulence of IAV infections. Virus adaptation through serial lung-to-lung passaging and reverse genetic engineering and mutagenesis approaches have been widely used in the studies. Nonetheless, a single study may not provide enough confident about virulence factors, hence combining several studies for a meta-analysis is desired to provide better views.MethodsVirulence information of IAV infections and the corresponding virus and mouse strains were documented from literature. Using the mouse lethal dose 50, time series of weight loss or percentage of survival, the virulence of the infections was classified as avirulent or virulent for two-class problems, and as low, intermediate or high for three-class problems. On the other hand, protein sequences were decoded from the corresponding IAV genomes or reconstructed manually from other proteins according to mutations mentioned in the related literature. IAV virulence models were then learned from various datasets containing IAV proteins whose amino acids at their aligned position and the corresponding two-class or three-class virulence labels. Three proven rule-based learning approaches, i.e., OneR, JRip and PART, and additionally random forest were used for modelling, and top protein sites and synergy between protein sites were identified from the models.ResultsMore than 500 records of IAV infections in mice whose viral proteins could be retrieved were documented. The BALB/C and C57BL/6 mouse strains and the H1N1, H3N2 and H5N1 viruses dominated the infection records. PART models learned from full or subsets of datasets achieved the best performance, with moderate averaged model accuracies ranged from 65.0% to 84.4% and from 54.0% to 66.6% for two-class and three-class datasets that utilized all records of aligned IAV proteins, respectively. Their averaged accuracies were comparable or even better than the averaged accuracies of random forest models and should be preferred based on the Occam’s razor principle. Interestingly, models based on a dataset that included all IAV strains achieved a better averaged accuracy when host information was taken into account. For model interpretation, we observed that although many sites in HA were highly correlated with virulence, PART models based on sites in PB2 could compete against and were often better than PART models based on sites in HA. Moreover, PART had a high preference to include sites in PB2 when models were learned from datasets containing concatenated alignments of all IAV proteins. Several sites with a known contribution to virulence were found as the top protein sites, and site pairs that may synergistically influence virulence were also uncovered.ConclusionModelling the virulence of IAV infections is a challenging problem. Rule-based models generated using only viral proteins are useful for its advantage in interpretation, but only achieve moderate performance. Development of more advanced machine learning approaches that learn models from features extracted from both viral and host proteins must be considered for future works.


Cryptography ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 30
Author(s):  
Bang Yuan Chong ◽  
Iftekhar Salam

This paper studies the use of deep learning (DL) models under a known-plaintext scenario. The goal of the models is to predict the secret key of a cipher using DL techniques. We investigate the DL techniques against different ciphers, namely, Simplified Data Encryption Standard (S-DES), Speck, Simeck and Katan. For S-DES, we examine the classification of the full key set, and the results are better than a random guess. However, we found that it is difficult to apply the same classification model beyond 2-round Speck. We also demonstrate that DL models trained under a known-plaintext scenario can successfully recover the random key of S-DES. However, the same method has been less successful when applied to modern ciphers Speck, Simeck, and Katan. The ciphers Simeck and Katan are further investigated using the DL models but with a text-based key. This application found the linear approximations between the plaintext–ciphertext pairs and the text-based key.


BMC Genomics ◽  
2019 ◽  
Vol 20 (S9) ◽  
Author(s):  
Fransiskus Xaverius Ivan ◽  
Chee Keong Kwoh

Abstract Background Influenza A virus (IAV) poses threats to human health and life. Many individual studies have been carried out in mice to uncover the viral factors responsible for the virulence of IAV infections. Nonetheless, a single study may not provide enough confident about virulence factors, hence combining several studies for a meta-analysis is desired to provide better views. For this, we documented more than 500 records of IAV infections in mice, whose viral proteins could be retrieved and the mouse lethal dose 50 or alternatively, weight loss and/or survival data, was/were available for virulence classification. Results IAV virulence models were learned from various datasets containing aligned IAV proteins and the corresponding two virulence classes (avirulent and virulent) or three virulence classes (low, intermediate and high virulence). Three proven rule-based learning approaches, i.e., OneR, JRip and PART, and additionally random forest were used for modelling. PART models achieved the best performance, with moderate average model accuracies ranged from 65.0 to 84.4% and from 54.0 to 66.6% for the two-class and three-class problems, respectively. PART models were comparable to or even better than random forest models and should be preferred based on the Occam’s razor principle. Interestingly, the average accuracy of the models was improved when host information was taken into account. For model interpretation, we observed that although many sites in HA were highly correlated with virulence, PART models based on sites in PB2 could compete against and were often better than PART models based on sites in HA. Moreover, PART had a high preference to include sites in PB2 when models were learned from datasets containing the concatenated alignments of all IAV proteins. Several sites with a known contribution to virulence were found as the top protein sites, and site pairs that may synergistically influence virulence were also uncovered. Conclusion Modelling IAV virulence is a challenging problem. Rule-based models generated using viral proteins are useful for its advantage in interpretation, but only achieve moderate performance. Development of more advanced approaches that learn models from features extracted from both viral and host proteins shall be considered for future works.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2893
Author(s):  
Daniel Bravo-Candel ◽  
Jésica López-Hernández ◽  
José Antonio García-Díaz ◽  
Fernando Molina-Molina ◽  
Francisco García-Sánchez

Real-word errors are characterized by being actual terms in the dictionary. By providing context, real-word errors are detected. Traditional methods to detect and correct such errors are mostly based on counting the frequency of short word sequences in a corpus. Then, the probability of a word being a real-word error is computed. On the other hand, state-of-the-art approaches make use of deep learning models to learn context by extracting semantic features from text. In this work, a deep learning model were implemented for correcting real-word errors in clinical text. Specifically, a Seq2seq Neural Machine Translation Model mapped erroneous sentences to correct them. For that, different types of error were generated in correct sentences by using rules. Different Seq2seq models were trained and evaluated on two corpora: the Wikicorpus and a collection of three clinical datasets. The medicine corpus was much smaller than the Wikicorpus due to privacy issues when dealing with patient information. Moreover, GloVe and Word2Vec pretrained word embeddings were used to study their performance. Despite the medicine corpus being much smaller than the Wikicorpus, Seq2seq models trained on the medicine corpus performed better than those models trained on the Wikicorpus. Nevertheless, a larger amount of clinical text is required to improve the results.


2021 ◽  
Vol 7 ◽  
pp. e577
Author(s):  
Manuel Camargo ◽  
Marlon Dumas ◽  
Oscar González-Rojas

A generative model is a statistical model capable of generating new data instances from previously observed ones. In the context of business processes, a generative model creates new execution traces from a set of historical traces, also known as an event log. Two types of generative business process models have been developed in previous work: data-driven simulation models and deep learning models. Until now, these two approaches have evolved independently, and their relative performance has not been studied. This paper fills this gap by empirically comparing a data-driven simulation approach with multiple deep learning approaches for building generative business process models. The study sheds light on the relative strengths of these two approaches and raises the prospect of developing hybrid approaches that combine these strengths.


Cybersecurity ◽  
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Chen Gao ◽  
Xuan Zhang ◽  
Hui Liu

AbstractNamed Entity Recognition (NER) for cyber security aims to identify and classify cyber security terms from a large number of heterogeneous multisource cyber security texts. In the field of machine learning, deep neural networks automatically learn text features from a large number of datasets, but this data-driven method usually lacks the ability to deal with rare entities. Gasmi et al. proposed a deep learning method for named entity recognition in the field of cyber security, and achieved good results, reaching an F1 value of 82.8%. But it is difficult to accurately identify rare entities and complex words in the text.To cope with this challenge, this paper proposes a new model that combines data-driven deep learning methods with knowledge-driven dictionary methods to build dictionary features to assist in rare entity recognition. In addition, based on the data-driven deep learning model, an attention mechanism is adopted to enrich the local features of the text, better models the context, and improves the recognition effect of complex entities. Experimental results show that our method is better than the baseline model. Our model is more effective in identifying cyber security entities. The Precision, Recall and F1 value reached 90.19%, 86.60% and 88.36% respectively.


Sign in / Sign up

Export Citation Format

Share Document