scholarly journals Dynamic 3D Simulation of Flood Risk Based on the Integration of Spatio-Temporal GIS and Hydrodynamic Models

2019 ◽  
Vol 8 (11) ◽  
pp. 520 ◽  
Author(s):  
Yongxing Wu ◽  
Fei Peng ◽  
Yang Peng ◽  
Xiaoyang Kong ◽  
Heming Liang ◽  
...  

Dynamic visual simulation of flood risk is crucial for scientific and intelligent emergency management of flood disasters, in which data quality, availability, visualization, and interoperability are important. Here, a seamless integration of a spatio-temporal Geographic Information System (GIS) with one-dimensional (1D) and two-dimensional (2D) hydrodynamic models is achieved for data flow, calculation processes, operation flow, and system functions. Oblique photography-based three-dimensional (3D) modeling technology is used to quickly build a 3D model of the study area (including the hydraulic engineering facilities). A multisource spatio-temporal data platform for dynamically simulating flood risk was built based on the digital earth platform. Using the spatio-temporal computation framework, a dynamic visual simulation and decision support system for flood risk management was developed for the Xiashan Reservoir. The integration method proposed here was verified using flood simulation calculations, dynamic visual simulations, and downstream river channel and dam-break flood simulations. The results show that the proposed methods greatly improve the efficiency of flood risk simulation and decision support. The methods and system put forward in this study can be applied to flood risk simulations and practical management.

2014 ◽  
Vol 687-691 ◽  
pp. 4101-4104
Author(s):  
Xi Zhe Peng

Large area real terrain modeling is the key technology in visual simulation system. This thesis discusses the terrain modeling technology based on the GeoTIFF data, which transform the GeoTIFF data to DEM using the Global Mapper. And then, the three dimensional terrain models are established through Creator environment, the real terrain modeling is implemented quickly.


2021 ◽  
Author(s):  
Kerstin Schmid ◽  
Andreas Knote ◽  
Alexander Mueck ◽  
Keram Pfeiffer ◽  
Sebastian von Mammen ◽  
...  

In interdisciplinary fields such as systems biology, close collaboration between experimentalists and theorists is crucial for the success of a project. Theoretical modeling in physiology usually describes complex systems with many interdependencies. On one hand, these models have to be grounded on experimental data. On the other hand, experimenters must be able to penetrate the model in its dependencies in order to correctly interpret the results in the physiological context. When theorists and experimenters collaborate, communicating results and ideas is sometimes challenging. We promote interactive, visual simulations as an engaging way to communicate theoretical models in physiology and to thereby advance our understanding of the process of interest. We defined a new spatio-temporal model for gas exchange in the human alveolus and implemented it in an interactive simulation software named Alvin. In Alvin, the course of the simulation can be traced in a three-dimensional rendering of an alveolus and dynamic plots. The user can interact by configuring essential model parameters. Alvin allows to run and compare multiple simulation instances simultaneously. The mathematical model was developed with the aim of visualization and the simulation software was engineered based on a requirements analysis. Our work resulted in an integrative gas exchange model and an interactive application that exceed the current standards. We exemplified the use of Alvin for research by identifying unknown dependencies in published experimental data. Employing a detailed questionnaire, we showed the benefits of Alvin for education. We postulate that interactive, visual simulation of theoretical models, as we have implemented with Alvin on respiratory processes in the alveolus, can be of great help for communication between specialists and thereby advancing research.


2012 ◽  
Vol 256-259 ◽  
pp. 2523-2527
Author(s):  
Qian Wei Wang ◽  
Rui Rui Sun ◽  
Wei Ping Guo

With regards to the characteristics of inter-basin water transfer projects, a 3d visual simulation (Three-Dimensional Visual Simulation, 3DVS) method for inter-basin water transfer project was proposed. A virtual reproduction of the entire project and its topography is achieved. The supplement of the three-dimensional topographic data was completed by Civil 3D combinedwith Google Earth. In this paper, the 3D digital model of inter-basin water transfer project is established using 3ds Max. Based on the established digital model, the simulation of channel water were realized .The Yuzhou section of South-to-North Water Transfer Project is taken as a case study. 3D visual simulation provides an effective way for the construction management and decision-making for inter-basin water diversion project.


Author(s):  
Yan Gong ◽  
Cong Wang ◽  
Meng Lin ◽  
Zhiguang Gao ◽  
Xiaodong Zhang

The bowed-twisted-swept modeling technology of three-dimensional blade has been widely used in the gas impeller machinery and achieved good results. This paper introduces the two-dimensional flow theory and the bowed-twisted-swept modeling ideology into hydraulic turbine design. Simultaneously combined with the popular NSGA-II multi-objective optimization algorithm, a complete set of hydraulic turbine cascade design method was proposed. Taking the last-stage low aspect ratio hydraulic cascade of Ф175 type turbine as an example, the parametric model of this cascade was reconstructed by a high-precision automatic bridge coordinate measuring machine. The multi-objective optimization design of three-dimensional modeling of cascade was completed with the single-stage turbine output torque, efficiency and pressure drop as the objective targets. Finally the influence of the bowed-twisted-swept modeling technology on the hydraulic turbine performance was explored in detail by a professional rotating machinery CFD software. Numerical analysis shows that the twisted blade design achieves a 1.5 times increase in torque and 2 to 4 times increase in pressure diff at same working condition. Moreover, when bowing optimization design and sweeping optimization design are applied on the twisted blade individually, the output torque and the stage efficiency of the hydraulic turbine are respectively improved, and when both two methods are simultaneously applied on the twisted blade, it is beneficial to reduce the pressure drop loss. However, it is noticeable that when the bowed-swept modeling technology used in a straight blade using almost have no effect on the turbine performance.


2011 ◽  
Vol 19 (3) ◽  
pp. 189
Author(s):  
Karsten Rodenacker ◽  
Klaus Hahn ◽  
Gerhard Winkler ◽  
Dorothea P Auer

Spatio-temporal digital data from fMRI (functional Magnetic Resonance Imaging) are used to analyse and to model brain activation. To map brain functions, a well-defined sensory activation is offered to a test person and the hemodynamic response to neuronal activity is studied. This so-called BOLD effect in fMRI is typically small and characterised by a very low signal to noise ratio. Hence the activation is repeated and the three dimensional signal (multi-slice 2D) is gathered during relatively long time ranges (3-5 min). From the noisy and distorted spatio-temporal signal the expected response has to be filtered out. Presented methods of spatio-temporal signal processing base on non-linear concepts of data reconstruction and filters of mathematical morphology (e.g. alternating sequential morphological filters). Filters applied are compared by classifications of activations.


Sign in / Sign up

Export Citation Format

Share Document