scholarly journals Tri-Clustering Based Exploration of Temporal Resolution Impacts on Spatio-Temporal Clusters in Geo-Referenced Time Series

2020 ◽  
Vol 9 (4) ◽  
pp. 210
Author(s):  
Xiaojing Wu ◽  
Donghai Zheng

Unprecedented amounts of spatio-temporal data instigates an urgent need for patterns exploration in it. Clustering analysis is useful in extracting patterns from big data by grouping similar data elements into clusters. Compared with one-way clustering and co-clustering methods, tri-clustering methods are more capable of exploring complex patterns. However, the explored patterns or clusters could be different due to varying temporal resolutions of input data. This study presents a tri-clustering based method to explore the impacts of different temporal resolutions on spatio-temporal clusters identified in geo-referenced time series (GTS), one type of spatio-temporal data. Dutch daily temperature data at 28 stations over 20 years was used to illustrate this study. The temperature data at daily, monthly, and yearly resolutions were subjected to the Bregman cube average tri-clustering algorithm with I-divergence (BCAT_I) to detect spatio-temporal clusters, which were then compared in terms of patterns exhibited, compositions, and changed elements. Results confirm the temporal resolution impacts on the spatio-temporal clusters identified in the Dutch temperature data: most compositions of clusters are varying when changing the temporal resolutions of input data in the GTS. Nevertheless, there is almost no change of elements in certain clusters (12 stations in the northeast of the country; years 1996, 2010) at all temporal resolutions, suggesting them as the “true” clusters in the case study dataset.

2020 ◽  
Author(s):  
Mieke Kuschnerus ◽  
Roderik Lindenbergh ◽  
Sander Vos

Abstract. Sandy coasts are constantly changing environments governed by complex interacting processes. Permanent laser scanning is a promising technique to monitor such coastal areas and support analysis of geomorphological deformation processes. This novel technique delivers 3D representations of a part of the coast at hourly temporal and centimetre spatial resolution and allows to observe small scale changes in elevation over extended periods of time. These observations have the potential to improve understanding and modelling of coastal deformation processes. However, to be of use to coastal researchers and coastal management, an efficient way to find and extract deformation processes from the large spatio-temporal data set is needed. In order to allow data mining in an automated way, we extract time series in elevation or range and use unsupervised learning algorithms to derive a partitioning of the observed area according to change patterns. We compare three well known clustering algorithms, k-means, agglomerative clustering and DBSCAN, and identify areas that undergo similar evolution during one month. We test if they fulfil our criteria for a suitable clustering algorithm on our exemplary data set. The three clustering methods are applied to time series of 30 epochs (during one month) extracted from a data set of daily scans covering a part of the coast at Kijkduin, the Netherlands. A small section of the beach, where a pile of sand was accumulated by a bulldozer is used to evaluate the performance of the algorithms against a ground truth. The k-means algorithm and agglomerative clustering deliver similar clusters, and both allow to identify a fixed number of dominant deformation processes in sandy coastal areas, such as sand accumulation by a bulldozer or erosion in the intertidal area. The DBSCAN algorithm finds clusters for only about 44 % of the area and turns out to be more suitable for the detection of outliers, caused for example by temporary objects on the beach. Our study provides a methodology to efficiently mine a spatio-temporal data set for predominant deformation patterns with the associated regions, where they occur.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Lianren Wu ◽  
Jinjie Li ◽  
Jiayin Qi

AbstractIn this paper, a quantitative temporal and spatial analysis of the dynamics of hot topics popularity in Micro-blogging system was provided. Firstly, the popularity time series of 1167 hot topics were counted and calculated by Excel. Secondly, based on MATLAB software,the popularity time series were clustered into six clusters by K-spectral centroid (K-SC) clustering algorithm. Thirdly, we analyzed temporal patterns and spatial patterns of popularity dynamics of topics by statistical methods. The results show that temporal popularity of micro-blogging topics is rapidly dying, and the distribution of popularity is subject to the power law form. In addition, most of the Micro-blogging topics are global topic. Our results can provide a literature reference for studying the influence of online hot topics and the evolution of public opinion.


Author(s):  
K. Anders ◽  
L. Winiwarter ◽  
H. Mara ◽  
R. C. Lindenbergh ◽  
S. E. Vos ◽  
...  

Abstract. Near-continuously acquired terrestrial laser scanning (TLS) data contains valuable information on natural surface dynamics. An important step in geographic analyses is to detect different types of changes that can be observed in a scene. For this, spatiotemporal segmentation is a time series-based method of surface change analysis that removes the need to select analysis periods, providing so-called 4D objects-by-change (4D-OBCs). This involves higher computational effort than pairwise change detection, and efforts scale with (i) the temporal density of input data and (ii) the (variable) spatial extent of delineated changes. These two factors determine the cost and number of Dynamic Time Warping distance calculations to be performed for deriving the metric of time series similarity. We investigate how a reduction of the spatial and temporal resolution of input data influences the delineation of twelve erosion and accumulation forms, using an hourly five-month TLS time series of a sandy beach. We compare the spatial extent of 4D-OBCs obtained at reduced spatial (1.0 m to 15.0 m with 0.5 m steps) and temporal (2 h to 96 h with 2 h steps) resolution to the result from highest-resolution data. Many change delineations achieve acceptable performance with ranges of ±10 % to ±100 % in delineated object area, depending on the spatial extent of the respective change form. We suggest a locally adaptive approach to identify poor performance at certain resolution levels for the integration in a hierarchical approach. Consequently, the spatial delineation could be performed at high accuracy for specific target changes in a second iteration. This will allow more efficient 3D change analysis towards near-realtime, online TLS-based observation of natural surface changes.


2020 ◽  
Vol 12 (23) ◽  
pp. 3900
Author(s):  
Bingxin Bai ◽  
Yumin Tan ◽  
Gennadii Donchyts ◽  
Arjen Haag ◽  
Albrecht Weerts

High spatio–temporal resolution remote sensing images are of great significance in the dynamic monitoring of the Earth’s surface. However, due to cloud contamination and the hardware limitations of sensors, it is difficult to obtain image sequences with both high spatial and temporal resolution. Combining coarse resolution images, such as the moderate resolution imaging spectroradiometer (MODIS), with fine spatial resolution images, such as Landsat or Sentinel-2, has become a popular means to solve this problem. In this paper, we propose a simple and efficient enhanced linear regression spatio–temporal fusion method (ELRFM), which uses fine spatial resolution images acquired at two reference dates to establish a linear regression model for each pixel and each band between the image reflectance and the acquisition date. The obtained regression coefficients are used to help allocate the residual error between the real coarse resolution image and the simulated coarse resolution image upscaled by the high spatial resolution result of the linear prediction. The developed method consists of four steps: (1) linear regression (LR), (2) residual calculation, (3) distribution of the residual and (4) singular value correction. The proposed method was tested in different areas and using different sensors. The results show that, compared to the spatial and temporal adaptive reflectance fusion model (STARFM) and the flexible spatio–temporal data fusion (FSDAF) method, the ELRFM performs better in capturing small feature changes at the fine image scale and has high prediction accuracy. For example, in the red band, the proposed method has the lowest root mean square error (RMSE) (ELRFM: 0.0123 vs. STARFM: 0.0217 vs. FSDAF: 0.0224 vs. LR: 0.0221). Furthermore, the lightweight algorithm design and calculations based on the Google Earth Engine make the proposed method computationally less expensive than the STARFM and FSDAF.


2020 ◽  
Vol 12 (21) ◽  
pp. 3513
Author(s):  
Jonas Koehler ◽  
Claudia Kuenzer

Reliable forecasts on the impacts of global change on the land surface are vital to inform the actions of policy and decision makers to mitigate consequences and secure livelihoods. Geospatial Earth Observation (EO) data from remote sensing satellites has been collected continuously for 40 years and has the potential to facilitate the spatio-temporal forecasting of land surface dynamics. In this review we compiled 143 papers on EO-based forecasting of all aspects of the land surface published in 16 high-ranking remote sensing journals within the past decade. We analyzed the literature regarding research focus, the spatial scope of the study, the forecasting method applied, as well as the temporal and technical properties of the input data. We categorized the identified forecasting methods according to their temporal forecasting mechanism and the type of input data. Time-lagged regressions which are predominantly used for crop yield forecasting and approaches based on Markov Chains for future land use and land cover simulation are the most established methods. The use of external climate projections allows the forecasting of numerical land surface parameters up to one hundred years into the future, while auto-regressive time series modeling can account for intra-annual variances. Machine learning methods have been increasingly used in all categories and multivariate modeling that integrates multiple data sources appears to be more popular than univariate auto-regressive modeling despite the availability of continuously expanding time series data. Regardless of the method, reliable EO-based forecasting requires high-level remote sensing data products and the resulting computational demand appears to be the main reason that most forecasts are conducted only on a local scale. In the upcoming years, however, we expect this to change with further advances in the field of machine learning, the publication of new global datasets, and the further establishment of cloud computing for data processing.


Author(s):  
X. Wu ◽  
A. Poorthuis ◽  
R. Zurita-Milla ◽  
M.-J. Kraak

Since current studies on clustering analysis mainly focus on exploring spatial or temporal patterns separately, a co-clustering algorithm is utilized in this study to enable the concurrent analysis of spatio-temporal patterns. To allow users to adopt and adapt the algorithm for their own analysis, it is integrated within the server side of an interactive web-based platform. The client side of the platform, running within any modern browser, is a graphical user interface (GUI) with multiple linked visualizations that facilitates the understanding, exploration and interpretation of the raw dataset and co-clustering results. Users can also upload their own datasets and adjust clustering parameters within the platform. To illustrate the use of this platform, an annual temperature dataset from 28 weather stations over 20 years in the Netherlands is used. After the dataset is loaded, it is visualized in a set of linked visualizations: a geographical map, a timeline and a heatmap. This aids the user in understanding the nature of their dataset and the appropriate selection of co-clustering parameters. Once the dataset is processed by the co-clustering algorithm, the results are visualized in the small multiples, a heatmap and a timeline to provide various views for better understanding and also further interpretation. Since the visualization and analysis are integrated in a seamless platform, the user can explore different sets of co-clustering parameters and instantly view the results in order to do iterative, exploratory data analysis. As such, this interactive web-based platform allows users to analyze spatio-temporal data using the co-clustering method and also helps the understanding of the results using multiple linked visualizations.


2020 ◽  
Vol 49 (4) ◽  
pp. 76-88
Author(s):  
Yuriy Kharin

Problems of statistical analysis of discrete-valued time series are considered. Two approaches for construction of parsimonious (small-parametric) models for observed discrete data are proposed based on high-order Markov chains.Consistent statistical estimators for parameters of the developed models and some known models, and also statistical tests on the values of parameters are constructed. Probabilistic properties of the constructed statistical inferences are given. The developed theory is also applied for statistical analysis of spatio-temporal data. Theoretical results are illustrated by computer experiments on real statistical data.


2021 ◽  
Author(s):  
Fikri Bamahry ◽  
Kyriakos Balidakis ◽  
Robert Heinkelmann ◽  
Harald Schuh

<p>How far apart can two space geodetic sites be located to consider the integrated water vapor (hereinafter IWV) trends as equal, from a statistical viewpoint? How to do efficient feature selection with a given IWV time series? To address these questions, we utilize spatio-temporal variations of long-term IWV trends that were estimated employing very long baseline interferometry (VLBI), Global Navigation Satellite Systems (GNSS), and numerical weather prediction data (ERA5 reanalysis). We estimate coefficients for several spatial covariance functions; Hirvonen's model proves to be the most precise for our area of interest, Greater Europe. We find that the effective spatial resolution is around 56 km (for error level (p) < 0.05). Our investigations indicate that among else, altitude and proximity to the ocean are key factors affecting the IWV trend decorrelation lengths. We find good agreement between the spatially varying decorrelation lengths and established climate classification systems such as the latest Köppen-Geiger model. Moreover, the IWV trend variation as a function of data span and temporal resolution has been investigated. We find that varying the temporal resolution from one hour up to 30 days does not yield a statistically significant difference (p < 0.05) in the IWV trend and its uncertainty, provided the inherent autocorrelation is factored in and the data span remains. We also find that given the IWV time series length, the spread calculated from the estimated trends varying the start point of the time series, follows an exponential decrease <em>σ</em>(Δ<em>t</em>) = 22Δ<em>t</em> <sup>-1.7</sup> + 0.008.</p>


Sign in / Sign up

Export Citation Format

Share Document