scholarly journals Understanding Completeness and Diversity Patterns of OSM-Based Land-Use and Land-Cover Dataset in China

2020 ◽  
Vol 9 (9) ◽  
pp. 531
Author(s):  
ShuZhu Wang ◽  
Qi Zhou ◽  
YuanJian Tian

OpenStreetMap (OSM) data are considered essential for land-use and land-cover (LULC) mapping despite their lack of quality. Most relevant studies have employed an LULC reference dataset for quality assessment, but such a reference dataset is not freely available for most countries and regions. Thus, this study conducts an intrinsic quality assessment of the OSM-based LULC dataset (i.e., without using a reference LULC dataset) by examining the patterns of both its completeness and diversity. With China chosen as the study area, an OSM-based LULC dataset of the country was first generated and validated by using various accuracy measures. Both its completeness and diversity patterns were then mapped and analyzed in terms of each prefecture-level division of the country. The results showed the following: (1) While the overall accuracy was as high as 82.2%, most complete regions of China were not mapped well owing to a lack of diverse LULC classes. (2) In terms of socioeconomic factors and the number of contributors, higher correlations were noted for diversity patterns than completeness patterns; thus, the diversity pattern is a better reflection of socioeconomic factors and the spatial patterns of contributors. (3) Both the completeness and the diversity patterns can be combined to better understand an OSM-based LULC dataset. These results indicate that it is useful to consider diversity as a supplement for intrinsically assessing the quality of an OSM-based LULC dataset. This analytical method can also be applied to other countries and regions.

2021 ◽  
Vol 11 (1) ◽  
pp. 108
Author(s):  
Juliana Nazareth de Lana ◽  
Márcio de Oliveira ◽  
Vanessa Romario de Paula ◽  
Cézar Henrique Barra Rocha

Changes in the land use and land cover in areas adjacent to water reservoirs directly affect the quality of this water. This research presents a study on the water quality in the basin of one of the most important public water supply reservoirs in the city of Juiz de Fora, Minas Gerais. The main objective of this study was to analyze the behavior of limnological parameters and the correlation with land use and land cover in the contribution basin of the Doutor João Penido reservoir (CBJPR). The methodology was based on the analysis of water quality parameters, related to water samples collected from 2012 to 2015. Six sampling points were chosen from different locations: spring, medium course, main tributaries of the reservoir and the reservoir catchment. The parameters analyzed were turbidity, total solids (TS), oxygen consumed (OC), dissolved oxygen (DO), electrical conductivity, total nitrogen (TN), total phosphorus (TP), E. Coli, temperature, pH and total dissolved solids (TDS). The Kendall’s tau test was used to analyze the correlations between the parameters of water quality, land use and land cover in the CBJPR. In general, measured parameters showed better results in spring and in reservoir catchment, showing a worse quality of the water along the tributaries and the dilution power of the reservoir. The correlations pointed to the need for protection and preservation of forests in strategic locations to ensure good water quality.


Resources ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 37 ◽  
Author(s):  
Sekela Twisa ◽  
Mohamed Mwabumba ◽  
Mathew Kurian ◽  
Manfred F. Buchroithner

Land-use/land-cover changes are considered the dominant form of anthropogenic pressure on the environment, causing changes in ecosystem service patterns and affecting water supply services. Using the spatial econometric technique, we analysed the impact of land-use/land-cover change on water ecosystem services for domestic use upstream and downstream of the Wami River Basin. The results in terms of land-use/land-cover classes during the study period (2011–2016) indicate that cultivated land showed maximum positive changes in both sub-catchments, while bushland and woodland showed maximum negative changes upstream and downstream. The results showed that bushland, woodland, cultivated land, and grassland were significantly correlated with water point characteristics in both sub-catchments. For functionality characteristics, a significant effect was observed in bushland and grassland upstream and downstream, respectively, while sufficient water was found in woodland upstream and grassland downstream. Moreover, bushland was observed to have a significant number of water points with poor quality of water upstream, and a substantial number of water points with good quality of water were found in grassland downstream. We found that all measured land-use/land-cover changes and water point characteristic correlations were statistically significant; therefore, we concluded that land-use/land-cover change affects the water ecosystem in the basin. These results could facilitate decision-making and development of related policies and might support finding sustainable strategies for water ecosystem services for domestic use.


2020 ◽  
Vol 10 (10) ◽  
Author(s):  
Ishtiyaq Ahmad Rather ◽  
Abdul Qayoom Dar

Abstract A dynamic process like land use, if anthropogenically unsustainable, adversely affects the well-being of the land system. Worldwide, water bodies are facing imminent threat due to unsustainable anthropogenic activities. Water quality and ecology are the two characteristics of water bodies, if not preserved, shall have a direct consequence on the well-being of the human systems. Hence it is essential to understand the causes and consequences of the deteriorating water body systems. The condition is particularly grim in Himalayan water body ecosystems, where unplanned and unchecked urbanization has threatened their very existence. In the present study, the dynamics of land use/land cover (LULC) and its impact on the water quality of Dal Lake in Kashmir Himalaya, India has been assessed. We carried out a detailed study wherein changing LULC is analyzed against the deteriorating trophic status of the Dal Lake using time-series of satellite imagery of the lake’s catchment and its water quality data. Results indicated that the water quality of Dal Lake has remarkably deteriorated due to increased nutrient and sediment loads from the catchment, attributed to significant anthropogenic activities in the catchment. Due to unprecedented LULC changes in the catchment, the forest class shows a significantly negative change since the last four decades (1980–2018), corroborating with the ongoing deterioration of physicochemical characteristics of the lake. The analysis shows an increase in all the agents of eutrophication, such as NO3–N, TP, and COD, from 1990 to 2018. The decrease in forest, agriculture, and floating gardens was observed to show a significant negative correlation with the increase in the decadal average values of the COD, NO3–N, and TP for the same corresponding period. Similarly, a positive correlation was found between the increase in built-up, aquatic vegetation, bare surfaces, and these water quality parameters, establishing a strong relationship between the deteriorating condition of the lake and changing LULC. Our findings indicate that changing LULC of the lake’s catchment is one of the critical factors that has significantly contributed toward the deteriorating ecology and water quality of the Dal Lake. This study shall contribute toward the development of the robust conservation strategy in order to save this urban lake from its untimely death.


2020 ◽  
Vol 12 (6) ◽  
pp. 979 ◽  
Author(s):  
Magdalena Matysik ◽  
Damian Absalon ◽  
Michał Habel ◽  
Michael Maerker

Reservoirs are formed through the artificial damming of a river valley. Reservoirs, among others, capture polluted load transported by the tributaries in the form of suspended and dissolved sediments and substances. Therefore, reservoirs are treated in the European Union (EU) as “artificial” or “heavily modified” surface water bodies. The reservoirs’ pollutant load depends to a large extent on the degree of anthropogenic impact in the respective river catchment area. The purpose of this paper is to assess the mutual relation between the catchment area and the reservoirs. In particular, we focus on the effects of certain land use/land cover on reservoirs’ water quality. For this study, we selected twenty Polish reservoirs for an in-depth analysis using 2018 CORINE Land Cover data. This analysis allowed the identification of the main triggering factors in terms of water quality of the respective reservoirs. Moreover, our assessment clearly shows that water quality of the analysed dam reservoirs is directly affected by the composition of land use/land cover, both of the entire total reservoir catchment areas and the directly into the reservoir draining sub-catchment areas.


2020 ◽  
Vol 21 (1) ◽  
pp. 30
Author(s):  
Prasetyo Widodo ◽  
Abdul Japar Sidik

High pressure by community activities on the existence of forests, especially protected forests that affect the quality of the environment that can cause a disaster, such as the occurrence of flash floods that occurred in 2016 in Garut regency, cannot be separated from damage to the upstream cover of cimanuk-citanduy. This prompted investigators to analyze the three year change of land protection prevailing in Mt. Guntur RPH Simpang BKPH Bayongbong. The objective of research is to calculate how large changes land cover area in Mt. Guntur Protected Area (MGPA), RPH Simpang BKPH Bayongbong KPH Garut in three years. The data collected on July to August 2017 by geographic information system (GIS) and satellite image. The results of land cover interpretation by landsat 8 OLI image 2014 and 2017 describe the condition of land use and land cover change in MGPA. Land cover of MGPA dominated by shrub (B) is 287.58 Ha (57.52%) at 2014 and 202.89 Ha (40.58%) at 2017, so deforestation as three years is 31.24 Ha or 32.13%. The results of ground check there is a land use change to open land and farming dryland. According to data of image interpretation at 2017, the open land is 20.03 Ha but after ground checking is 20.51 Ha. The reduction of it based on data of image interpretation at 2017 is 200.33 Ha to 201.85 Ha after ground checking.


2019 ◽  
Vol 11 (24) ◽  
pp. 3040 ◽  
Author(s):  
Georgios Douzas ◽  
Fernando Bacao ◽  
Joao Fonseca ◽  
Manvel Khudinyan

The automatic production of land use/land cover maps continues to be a challenging problem, with important impacts on the ability to promote sustainability and good resource management. The ability to build robust automatic classifiers and produce accurate maps can have a significant impact on the way we manage and optimize natural resources. The difficulty in achieving these results comes from many different factors, such as data quality and uncertainty. In this paper, we address the imbalanced learning problem, a common and difficult conundrum in remote sensing that affects the quality of classification results, by proposing Geometric-SMOTE, a novel oversampling method, as a tool for addressing the imbalanced learning problem in remote sensing. Geometric-SMOTE is a sophisticated oversampling algorithm which increases the quality of the instances generated in previous methods, such as the synthetic minority oversampling technique. The performance of Geometric- SMOTE, in the LUCAS (Land Use/Cover Area Frame Survey) dataset, is compared to other oversamplers using a variety of classifiers. The results show that Geometric-SMOTE significantly outperforms all the other oversamplers and improves the robustness of the classifiers. These results indicate that, when using imbalanced datasets, remote sensing researchers should consider the use of these new generation oversamplers to increase the quality of the classification results.


2020 ◽  
Author(s):  
Jihui Fan ◽  
Majid Galoie ◽  
Artemis Motamedi ◽  
Jing Huang

Abstract The main objective of this paper is to evaluate the impact of land cover resolution, in comparison with the digital elevation model (DEM) resolution, on hydrological modeling outputs. Three different basins in the various resolutions of DEM (12.5, 25, 50, 100, 500 and 1,000 m) and land-use maps (250, 1,000 and 2,500 m) were collected in this study, and the hydrological modeling process was performed using the Soil and Water Assessment Tool (SWAT) model. The soil type resolution was 1,000 m for all basins, and the runoff modeling was done based on the Soil Conservation Service Curve Number (SCS-CN) method. The final model outputs showed that the DEM cell size variations affect significantly the topographical characteristics of a catchment such as area, mean slope, river network and time to concentration which alter the flood modeling outputs especially in hilly watersheds (mean slope more than 15%) up to 15% for a DEM cell size of 1,000 m in comparison to 12.5 m. Also, the resolution and spatial distribution of land cover maps which directly specify SCS-CN values, can change the output simulated runoff results up to 49% for a land cover cell size of 2,500 m in comparison to 250 m. These results indicated that the quality of the land cover map is more important than the quality of DEM in hydrological modeling. Also, the results showed that for an identical land-use cell size, the differences between model outputs using DEM cell sizes less than 100 m were not very significant. Furthermore, in all models by increasing the DEM cell size, the simulated runoff depth was decreased.


Sign in / Sign up

Export Citation Format

Share Document