scholarly journals Genome-Wide Analyses of the Soybean F-Box Gene Family in Response to Salt Stress

2017 ◽  
Vol 18 (4) ◽  
pp. 818 ◽  
Author(s):  
Qi Jia ◽  
Zhi-Xia Xiao ◽  
Fuk-Ling Wong ◽  
Song Sun ◽  
Kang-Jing Liang ◽  
...  
Keyword(s):  
2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Yuzhu Huo ◽  
Wangdan Xiong ◽  
Kunlong Su ◽  
Yu Li ◽  
Yawen Yang ◽  
...  

The plant-specific transcription factor TCPs play multiple roles in plant growth, development, and stress responses. However, a genome-wide analysis of TCP proteins and their roles in salt stress has not been declared in switchgrass (Panicum virgatum L.). In this study, 42 PvTCP genes (PvTCPs) were identified from the switchgrass genome and 38 members can be anchored to its chromosomes unevenly. Nine PvTCPs were predicted to be microRNA319 (miR319) targets. Furthermore, PvTCPs can be divided into three clades according to the phylogeny and conserved domains. Members in the same clade have the similar gene structure and motif localization. Although all PvTCPs were expressed in tested tissues, their expression profiles were different under normal condition. The specific expression may indicate their different roles in plant growth and development. In addition, approximately 20 cis-acting elements were detected in the promoters of PvTCPs, and 40% were related to stress response. Moreover, the expression profiles of PvTCPs under salt stress were also analyzed and 29 PvTCPs were regulated after NaCl treatment. Taken together, the PvTCP gene family was analyzed at a genome-wide level and their possible functions in salt stress, which lay the basis for further functional analysis of PvTCPs in switchgrass.


2019 ◽  
Vol 46 (3) ◽  
pp. 2721-2732 ◽  
Author(s):  
İlker Büyük ◽  
Emre İlhan ◽  
Dilara Şener ◽  
Ata Umut Özsoy ◽  
Sümer Aras

2019 ◽  
Author(s):  
Xinghao Chen ◽  
Jun Zhang ◽  
Chao Zhang ◽  
Shijie Wang ◽  
Minsheng Yang

Malate dehydrogenase (MDH) is widely distributed in plants and animals, and plays an important role in many metabolic processes. However, there have been few studies on MDH genes in poplar. In this study, 16 MDH gene sequences were identified from the Populus trichocarpa genome and renamed according to their chromosomal locations. Based on phylogenetic analysis, the PtMDH genes were divided into five groups, and genes that grouped together all shared the same subcellular location and had similar sequence lengths, gene structures, and conserved motifs. Two pairs of tandem duplication events and three segmental duplication events involving five genes were identified from the 15 PtMDH genes located on the chromosomes. Each pair of genes had a Ka/Ks ratios <1, indicating that the MDH gene family of P. trichocarpa was purified during evolution. Based on the transcriptome data of P. trichocarpa under salt stress and qRT-PCR verification, the expression patterns of PtMDH genes under salt stress were analyzed. The results showed that most of the genes were upregulated under salt stress, indicating that they play a role in the response of poplar to salt stress. The PtmMDH1 gene can be used as an important salt-tolerant candidate gene for further investigations of molecular mechanisms. This study lays the foundation for functional analysis of MDH genes and genetic improvement in poplar.


Sign in / Sign up

Export Citation Format

Share Document