scholarly journals Protein Co-Aggregation Related to Amyloids: Methods of Investigation, Diversity, and Classification

2018 ◽  
Vol 19 (8) ◽  
pp. 2292 ◽  
Author(s):  
Stanislav Bondarev ◽  
Kirill Antonets ◽  
Andrey Kajava ◽  
Anton Nizhnikov ◽  
Galina Zhouravleva

Amyloids are unbranched protein fibrils with a characteristic spatial structure. Although the amyloids were first described as protein deposits that are associated with the diseases, today it is becoming clear that these protein fibrils play multiple biological roles that are essential for different organisms, from archaea and bacteria to humans. The appearance of amyloid, first of all, causes changes in the intracellular quantity of the corresponding soluble protein(s), and at the same time the aggregate can include other proteins due to different molecular mechanisms. The co-aggregation may have different consequences even though usually this process leads to the depletion of a functional protein that may be associated with different diseases. The protein co-aggregation that is related to functional amyloids may mediate important biological processes and change of protein functions. In this review, we survey the known examples of the amyloid-related co-aggregation of proteins, discuss their pathogenic and functional roles, and analyze methods of their studies from bacteria and yeast to mammals. Such analysis allow for us to propose the following co-aggregation classes: (i) titration: deposition of soluble proteins on the amyloids formed by their functional partners, with such interactions mediated by a specific binding site; (ii) sequestration: interaction of amyloids with certain proteins lacking a specific binding site; (iii) axial co-aggregation of different proteins within the same amyloid fibril; and, (iv) lateral co-aggregation of amyloid fibrils, each formed by different proteins.

2000 ◽  
Vol 68 (4) ◽  
pp. 2061-2068 ◽  
Author(s):  
Truc Nguyen ◽  
Berhane Ghebrehiwet ◽  
Ellinor I. B. Peerschke

ABSTRACT The adhesion of Staphylococcus aureus to platelets is a major determinant of virulence in the pathogenesis of endocarditis. Molecular mechanisms mediating S. aureus interactions with platelets, however, are incompletely understood. The present study describes the interaction between S. aureus protein A and gC1qR/p33, a multifunctional, ubiquitously distributed cellular protein, initially described as a binding site for the globular heads of C1q. Suspensions of fixed S. aureus or purified protein A, chemically cross-linked to agarose support beads, were found to capture native gC1qR from whole platelets. Moreover, biotinylated protein A bound specifically to fixed, adherent, human platelets. This interaction was inhibited by unlabeled protein A, soluble recombinant gC1qR (rgC1qR), or anti-gC1qR antibody F(ab′)2 fragments. The interaction between protein A and platelet gC1qR was underscored by studies illustrating preferential recognition of the protein A-bearing S. aureus Cowan I strain by gC1qR compared to recognition of the protein A-deficient Wood 46 strain, as well as inhibition of S. aureus Cowan I strain adhesion to immobilized platelets by soluble protein A. Further characterization of the protein A-gC1qR interaction by solid-phase enzyme-linked immunosorbent assay techniques measuring biotinylated gC1qR binding to immobilized protein A revealed specific binding that was inhibited by soluble protein A with a 50% inhibitory concentration of (3.3 ± 0.7) × 10−7 M (mean ± standard deviation; n = 3). Rabbit immunoglobulin G (IgG) also prevented gC1qR-protein A interactions, and inactivation of protein A tyrosil residues by hyperiodination, previously reported to prevent the binding of IgG Fc, but not Fab, domains to protein A, abrogated gC1qR binding. These results suggest similar protein A structural requirements for gC1qR and IgG Fc binding. Further studies of structure and function using a truncated gC1qR mutant lacking amino acids 74 to 95 demonstrated that the protein A binding domain lies outside of the gC1qR amino-terminal alpha helix, which contains binding sites for the globular heads of C1q. In conclusion, the data implicate the platelet gC1qR as a novel cellular binding site for staphylococcal protein A and suggest an additional mechanism for bacterial cell adhesion to sites of vascular injury and thrombosis.


2021 ◽  
Vol 21 (6) ◽  
Author(s):  
Aleksandra V Sergeeva ◽  
Tatyana A Belashova ◽  
Stanislav A Bondarev ◽  
Marya E Velizhanina ◽  
Yury A Barbitoff ◽  
...  

ABSTRACT Prions are proteins that can exist in several structurally and functionally distinct states, one or more of which is transmissible. Yeast proteins Sup35 and Rnq1 in prion state ([PSI+] and [PIN+], respectively) form oligomers and aggregates, which are transmitted from parents to offspring in a series of generations. Several pieces of indirect evidence indicate that these aggregates also possess amyloid properties, but their binding to amyloid-specific dyes has not been shown in vivo. Meanwhile, it is the specific binding to the Congo Red dye and birefringence in polarized light after such staining that is considered the gold standard for proving the amyloid properties of a protein. Here, we used immunoprecipitation to extract native fibrils of the Sup35 and Rnq1 proteins from yeast strains with different prion status. These fibrils are detected by electron microscopy, stained with Congo Red and exhibit yellow-green birefringence after such staining. All these data show that the Sup35 and Rnq1 proteins in prion state form amyloid fibrils in vivo. The technology of fibrils extraction in combination with standard cytological methods can be used to identify new pathological and functional amyloids in any organism and to analyze the structural features of native amyloid fibrils.


2020 ◽  
Vol 21 (18) ◽  
pp. 6530
Author(s):  
Jie Sheng ◽  
Nick K. Olrichs ◽  
Bart M. Gadella ◽  
Dora V. Kaloyanova ◽  
J. Bernd Helms

The idea that amyloid fibrils and other types of protein aggregates are toxic for cells has been challenged by the discovery of a variety of functional aggregates. However, an identification of crucial differences between pathological and functional aggregation remains to be explored. Functional protein aggregation is often reversible by nature in order to respond properly to changing physiological conditions of the cell. In addition, increasing evidence indicates that fast fibril growth is a feature of functional amyloids, providing protection against the long-term existence of potentially toxic oligomeric intermediates. It is becoming clear that functional protein aggregation is a complexly organized process that can be mediated by a multitude of biomolecular factors. In this overview, we discuss the roles of diverse biomolecules, such as lipids/membranes, glycosaminoglycans, nucleic acids and metal ions, in regulating functional protein aggregation. Our studies on the protein GAPR-1 revealed that several of these factors influence the amyloidogenic properties of this protein. These observations suggest that GAPR-1, as well as the cysteine-rich secretory proteins, antigen 5 and pathogenesis-related proteins group 1 (CAP) superfamily of proteins that it belongs to, require the assembly into an amyloid state to exert several of their functions. A better understanding of functional aggregate formation may also help in the prevention and treatment of amyloid-related diseases.


2019 ◽  
Vol 14 (5) ◽  
pp. 405-420 ◽  
Author(s):  
Eduardo Alvarado-Ortiz ◽  
Miguel Á. Sarabia-Sánchez ◽  
Alejandro García-Carrancá

Cancer Stem Cells (CSC) generally constitute a minor cellular population within tumors that exhibits some capacities of normal Stem Cells (SC). The existence of CSC, able to self-renew and differentiate, influences central aspects of tumor biology, in part because they can continue tumor growth, give rise to metastasis, and acquire drug and radioresistance, which open new avenues for therapeutics. It is well known that SC constantly interacts with their niche, which includes mesenchymal cells, extracellular ligands, and the Extra Cellular Matrix (ECM). These interactions regularly lead to homeostasis and maintenance of SC characteristics. However, the exact participation of each of these components for CSC maintenance is not clear, as they appear to be context- or cell-specific. In the recent past, surface cellular markers have been fundamental molecular tools for identifying CSC and distinguishing them from other tumor cells. Importantly, some of these cellular markers have been shown to possess functional roles that affect central aspects of CSC. Likewise, some of these markers can participate in regulating the interaction of CSC with their niche, particularly the ECM. We focused this review on the molecular mechanisms of surface cellular markers commonly employed to identify CSC, highlighting the signaling pathways and mechanisms involved in CSC-ECM interactions, through each of the cellular markers commonly used in the study of CSC, such as CD44, CD133, CD49f, CD24, CXCR4, and LGR5. Their presence does not necessarily implicate them in CSC biology.


2021 ◽  
Vol 22 (9) ◽  
pp. 4349
Author(s):  
Eri Chatani ◽  
Keisuke Yuzu ◽  
Yumiko Ohhashi ◽  
Yuji Goto

Amyloid fibrils are supramolecular protein assemblies represented by a cross-β structure and fibrous morphology, whose structural architecture has been previously investigated. While amyloid fibrils are basically a main-chain-dominated structure consisting of a backbone of hydrogen bonds, side-chain interactions also play an important role in determining their detailed structures and physicochemical properties. In amyloid fibrils comprising short peptide segments, a steric zipper where a pair of β-sheets with side chains interdigitate tightly is found as a fundamental motif. In amyloid fibrils comprising longer polypeptides, each polypeptide chain folds into a planar structure composed of several β-strands linked by turns or loops, and the steric zippers are formed locally to stabilize the structure. Multiple segments capable of forming steric zippers are contained within a single protein molecule in many cases, and polymorphism appears as a result of the diverse regions and counterparts of the steric zippers. Furthermore, the β-solenoid structure, where the polypeptide chain folds in a solenoid shape with side chains packed inside, is recognized as another important amyloid motif. While side-chain interactions are primarily achieved by non-polar residues in disease-related amyloid fibrils, the participation of hydrophilic and charged residues is prominent in functional amyloids, which often leads to spatiotemporally controlled fibrillation, high reversibility, and the formation of labile amyloids with kinked backbone topology. Achieving precise control of the side-chain interactions within amyloid structures will open up a new horizon for designing useful amyloid-based nanomaterials.


2021 ◽  
Vol 22 (10) ◽  
pp. 5075
Author(s):  
Mantas Ziaunys ◽  
Andrius Sakalauskas ◽  
Kamile Mikalauskaite ◽  
Ruta Snieckute ◽  
Vytautas Smirnovas

Prion protein aggregation into amyloid fibrils is associated with the onset and progression of prion diseases—a group of neurodegenerative amyloidoses. The process of such aggregate formation is still not fully understood, especially regarding their polymorphism, an event where the same type of protein forms multiple, conformationally and morphologically distinct structures. Considering that such structural variations can greatly complicate the search for potential antiamyloid compounds, either by having specific propagation properties or stability, it is important to better understand this aggregation event. We have recently reported the ability of prion protein fibrils to obtain at least two distinct conformations under identical conditions, which raised the question if this occurrence is tied to only certain environmental conditions. In this work, we examined a large sample size of prion protein aggregation reactions under a range of temperatures and analyzed the resulting fibril dye-binding, secondary structure and morphological properties. We show that all temperature conditions lead to the formation of more than one fibril type and that this variability may depend on the state of the initial prion protein molecules.


1991 ◽  
Vol 266 (29) ◽  
pp. 19139-19141
Author(s):  
H. Arita ◽  
K. Hanasaki ◽  
T. Nakano ◽  
S. Oka ◽  
H. Teraoka ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jie Mei ◽  
Yan Liu ◽  
Xinqian Yu ◽  
Leiyu Hao ◽  
Tao Ma ◽  
...  

AbstractDishevelled-associated activator of morphogenesis 1 (DAAM1) is a critical driver in facilitating metastasis in breast cancer (BrCa). However, molecular mechanisms for the regulation of DAAM1 activation are only partially elucidated. In this research, the expression levels of YWHAZ and DAAM1 were examined by immunohistochemistry (IHC) staining in BrCa tissues. The functional roles of tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ)–DAAM1 axis and their regulator microRNA-613 (miR-613) in BrCa cells and associated molecular mechanisms were demonstrated in vitro. As results, the expression levels of DAAM1 and YWHAZ were significantly upregulated in BrCa tissues compared with normal tissues and remarkably associated with poor prognosis. Besides, DAAM1 and YWHAZ were positively correlated with each other in BrCa tissues. YWHAZ interacted and colocalized with DAAM1 in BrCa cells, which was essential for DAAM1-mediated microfilament remodeling and RhoA activation. Moreover, miR-613 directly targeted both YWHAZ and DAAM1, contributing to inhibiting BrCa cells migration via blocking the complex of YWHAZ–DAAM1. To sum up, these data reveal that YWHAZ regulates DAAM1 activation, and the YWHAZ–DAAM1 complex is directly targeted by the shared post-transcriptional regulator miR-613.


Sign in / Sign up

Export Citation Format

Share Document