scholarly journals Transcriptomic Analyses of Root Restriction Effects on Phytohormone Content and Signal Transduction during Grape Berry Development and Ripening

2018 ◽  
Vol 19 (8) ◽  
pp. 2300 ◽  
Author(s):  
Feng Leng ◽  
Jinping Cao ◽  
Shiping Wang ◽  
Ling Jiang ◽  
Xian Li ◽  
...  

Phytohormones strongly influence growth, development and nutritional quality of agricultural products by modulating molecular and biochemical changes. The purpose of the present study was to investigate the influence of root restriction (RR) treatment on the dynamic changes of main phytohormones during the berry development and ripening of “Summer Black” early ripening seedless grape (Vitis vinifera × V. labrusca), and to analyze the changes in the biosynthesis and signal transduction pathways of phytohormones by transcriptomics. Enzyme-linked immunosorbent assay (ELISA) and Ultra Performance Liquid Chromatography-High Resolution Mass Spectrometry (UPLC-HRMS) were used to quantify the phytohormone levels, and RNA-Seq was used to analyze the transcript abundance. The results showed that 23 transcripts involved in the phytohormone biosynthesis and 34 transcripts involved in the signal transduction pathways were significantly changed by RR treatment. RR also increased abscisic acid, brassinosteroid, ethylene, jasmonic acid and salicylic acid levels, while decreasing auxin, cytokinin, and gibberellin contents. The results of the present study suggest that RR treatment can accelerate the grape ripening process, and specific candidate genes were identified for further functional analysis.

2020 ◽  
Vol 68 (34) ◽  
pp. 9090-9099
Author(s):  
Feng Leng ◽  
Jinping Cao ◽  
Zhiwei Ge ◽  
Yue Wang ◽  
Chenning Zhao ◽  
...  

2020 ◽  
Vol 48 (2) ◽  
pp. 613-620
Author(s):  
Clara Ortegón Salas ◽  
Katharina Schneider ◽  
Christopher Horst Lillig ◽  
Manuela Gellert

Processing of and responding to various signals is an essential cellular function that influences survival, homeostasis, development, and cell death. Extra- or intracellular signals are perceived via specific receptors and transduced in a particular signalling pathway that results in a precise response. Reversible post-translational redox modifications of cysteinyl and methionyl residues have been characterised in countless signal transduction pathways. Due to the low reactivity of most sulfur-containing amino acid side chains with hydrogen peroxide, for instance, and also to ensure specificity, redox signalling requires catalysis, just like phosphorylation signalling requires kinases and phosphatases. While reducing enzymes of both cysteinyl- and methionyl-derivates have been characterised in great detail before, the discovery and characterisation of MICAL proteins evinced the first examples of specific oxidases in signal transduction. This article provides an overview of the functions of MICAL proteins in the redox regulation of cellular functions.


Sign in / Sign up

Export Citation Format

Share Document