scholarly journals YC-1 Prevents Tumor-Associated Tissue Factor Expression and Procoagulant Activity in Hypoxic Conditions by Inhibiting p38/NF-κB Signaling Pathway

2019 ◽  
Vol 20 (2) ◽  
pp. 244 ◽  
Author(s):  
Kan-Yen Hsieh ◽  
Chien-Kei Wei ◽  
Chin-Chung Wu

Tissue factor (TF) expressed in cancer cells has been linked to tumor-associated thrombosis, a major cause of mortality in malignancy. Hypoxia is a common feature of solid tumors and can upregulate TF. In this study, the effect of YC-1, a putative inhibitor of hypoxia-inducible factor-1α (HIF-1α), on hypoxia-induced TF expression was investigated in human lung cancer A549 cells. YC-1 selectively prevented hypoxia-induced TF expression and procoagulant activity without affecting the basal TF levels. Surprisingly, knockdown or pharmacological inhibition of HIF-1α failed to mimic YC-1′s effect on TF expression, suggesting other mechanisms are involved. NF-κB, a transcription factor for TF, and its upstream regulator p38, were activated by hypoxia exposure. Treatment of hypoxic A549 cells with YC-1 prevented the activation of both NF-κB and p38. Inhibition of p38 suppressed hypoxia-activated NF-κB, and inhibited TF expression and activity to similar levels as treatment with an NF-κB inhibitor. Furthermore, stimulation of p38 by anisomycin reversed the effects of YC-1. Taken together, our results suggest that YC-1 prevents hypoxia-induced TF in cancer cells by inhibiting the p38/NF-κB pathway, this is distinct from the conventional anticoagulants that systemically inhibit blood coagulation and may shed new light on approaches to treat tumor-associated thrombosis.

2019 ◽  
Vol 51 (7) ◽  
Author(s):  
Jae-Rin Lee ◽  
Jong-Yoon Lee ◽  
Hyun-Ji Kim ◽  
Myong-Joon Hahn ◽  
Jong-Sun Kang ◽  
...  

AbstractChloride intracellular channel 1 (CLIC1) is a promising therapeutic target in cancer due to its intrinsic characteristics; it is overexpressed in specific tumor types and its localization changes from cytosolic to surface membrane depending on activities and cell cycle progression. Ca2+ and reactive oxygen species (ROS) are critical signaling molecules that modulate diverse cellular functions, including cell death. In this study, we investigated the function of CLIC1 in Ca2+ and ROS signaling in A549 human lung cancer cells. Depletion of CLIC1 via shRNAs in A549 cells increased DNA double-strand breaks both under control conditions and under treatment with the putative anticancer agent chelerythrine, accompanied by a concomitant increase in the p-JNK level. CLIC1 knockdown greatly increased basal ROS levels, an effect prevented by BAPTA-AM, an intracellular calcium chelator. Intracellular Ca2+ measurements clearly showed that CLIC1 knockdown significantly increased chelerythrine-induced Ca2+ signaling as well as the basal Ca2+ level in A549 cells compared to these levels in control cells. Suppression of extracellular Ca2+ restored the basal Ca2+ level in CLIC1-knockdown A549 cells relative to that in control cells, implying that CLIC1 regulates [Ca2+]i through Ca2+ entry across the plasma membrane. Consistent with this finding, the L-type Ca2+ channel (LTCC) blocker nifedipine reduced the basal Ca2+ level in CLIC1 knockdown cells to that in control cells. Taken together, our results demonstrate that CLIC1 knockdown induces an increase in the intracellular Ca2+ level via LTCC, which then triggers excessive ROS production and consequent JNK activation. Thus, CLIC1 is a key regulator of Ca2+ signaling in the control of cancer cell survival.


2002 ◽  
Vol 30 (02n03) ◽  
pp. 307-314 ◽  
Author(s):  
Hui-Chiu Chang ◽  
Wen-Chun Hung ◽  
Ming-Shyan Huang ◽  
Hseng-Kuang Hsu

Recent study indicated that the components of Toona sinensis Roemor have potent anti-inflammatory and analgesic effects. These components have also been reported to inhibit the growth of boils in vivo. In this study, we investigated the effect of crude extract from the leaves of Toona sinensis Roemor on the proliferation of A549 lung cancer cells. We found that the extract effectively blocked cell cycle progression by inhibiting the expression of cyclin D1 and E in A549 cells. Additionally, incubation of the extract led to activation of caspase-3-like proteases and apoptotic cell death. Conversely, the extract did not show any significant cytotoxic effect on primarily cultured human foreskin fibroblasts or MRC-5 human lung fibroblasts. Therefore, antiproliferative action of the extract is specific for tumor cells. Our results suggest that the components of Toona sinensis Roemor have potent anticancer effects in vitro and identification of the useful components in the extract may lead to the development of a novel class of anticancer drugs.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Xing Lin ◽  
Qianshun Chen ◽  
Chen Huang ◽  
Xunyu Xu

Lung cancer is one of the most common cancers in the world. Cylindromatosis (CYLD) is a deubiquitination enzyme and contributes to the degradation of ubiquitin chains on RIP1. The aim of the present study is to investigate the levels of CYLD in lung cancer patients and explore the molecular mechanism of CYLD in the lung cancer pathogenesis. The levels of CYLD were detected in human lung cancer tissues and the paired paracarcinoma tissues by real-time PCR and western blotting analysis. The proliferation of human lung cancer cells was determined by MTT assay. Cell apoptosis and necrosis were determined by FACS assay. The results demonstrated that low levels of CYLD were detected in clinical lung carcinoma specimens. Three pairs of siRNA were used to knock down the endogenous CYLD in lung cancer cells. Knockdown of CYLD promoted cell proliferation of lung cancer cells. Otherwise overexpression of CYLD induced TNF-α-induced cell death in A549 cells and H460 cells. Moreover, CYLD-overexpressed lung cancer cells were treated with 10 μM of z-VAD-fmk for 12 hours and the result revealed that TNF-α-induced cell necrosis was significantly enhanced. Additionally, TNF-α-induced cell necrosis in CYLD-overexpressed H460 cells was mediated by receptor-interacting protein 1 (RIP-1) kinase. Our findings suggested that CYLD was a potential target for the therapy of human lung cancers.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Pornchanok Taweecheep ◽  
Hnin Ei Ei Khine ◽  
Anirut Hlosrichok ◽  
Gea Abigail Uy Ecoy ◽  
Boonchoo Sritularak ◽  
...  

Cancer stem-like cells (CSCs) are key mediators driving tumor initiation, metastasis, therapeutic failure, and subsequent cancer relapse. Thus, targeting CSCs has recently emerged as a potential strategy to improve chemotherapy. In this study, the anticancer activity and stemness-regulating capacity of 4,5,4′-trihydroxy-3,3′-dimethoxybibenzyl (TDB), a bibenzyl extracted from Dendrobium ellipsophyllum, are revealed in CSCs of various human lung cancer cells. Culture with TDB (5–10 μM) strongly abolished tumor-initiating cells in lung cancer H460, H23, and A549 cells in both anchorage-dependent and anchorage-independent colony formation assays. Through the 3D single-spheroid formation model, attenuation of self-renewal capacity was observed in CSC-enriched populations treated with 1–10 μM TDB for 7 days. Flow cytometry analysis confirmed the attenuation of %cell overexpressing CD133, a CSC biomarker, in TDB-treated lung cancer spheroids. TDB at 5–10 μM remarkably suppressed regulatory signals of p-Akt/Akt, p-GSK3β/GSK3β, and β-catenin corresponding to the downregulated mRNA level of stemness transcription factors including Nanog, Oct4, and Sox2. Moreover, the antiapoptosis Bcl-2 and Mcl-1 proteins, which are downstream molecules of Akt signaling, were evidently decreased in CSC-enriched spheroids after culture with TDB (1–10 μM) for 24 h. Interestingly, the diminution of Akt expression by specific siAkt effectively reversed suppressive activity of TDB targeting on the CSC phenotype in human lung cancer cells. These findings provide promising evidence of the inhibitory effect of TDB against lung CSCs via suppression of Akt/GSK3β/β-catenin cascade and related proteins, which would facilitate the development of this bibenzyl natural compound as a novel CSC-targeted therapeutic approach for lung cancer treatment.


2017 ◽  
Vol 42 (6) ◽  
pp. 2507-2522 ◽  
Author(s):  
Nauana Somensi ◽  
Pedro Ozorio Brum ◽  
Vitor de Miranda Ramos ◽  
Juciano Gasparotto ◽  
Alfeu Zanotto-Filho ◽  
...  

Background/Aims: Heat shock protein 70 (HSP70) has been recently described with extracellular actions, where it is actively released in inflammatory conditions. Acting as DAMPs (damage associated molecular pattern), extracellular HSP70 (eHSP70) interacts with membrane receptors and activates inflammatory pathways. At this context, the receptor for advanced glycation endproducts (RAGE) emerges as a possible candidate for interaction with eHSP70. RAGE is a pattern-recognition receptor and its expression is increased in several diseases related to a chronic pro-inflammatory state. One of the main consequences of RAGE ligand-binding is the ERK1/2 (extracellular signal–regulated kinases)-dependent activation of NF-kB (nuclear factor kappa B), which leads to expression of TNF-α (tumor necrosis factor alpha) and other cytokines. The purpose of this work is to elucidate if eHSP70 is able to evoke RAGE-dependent signaling using A549 human lung cancer cells, which constitutively express RAGE. Methods: Immunoprecipitation and protein proximity assay were utilized to demonstrate the linkage between RAGE and eHSP70. To investigate RAGE relevance on cell response to eHSP70, siRNA was used to knockdown the receptor expression. Signaling pathways activation were evaluated by western blotting, gene reporter luciferase and real time quantitative PCR. Results: Protein eHSP70 shown to be interacting physically with the receptor RAGE in our cell model. Treatment with eHSP70 caused ERK1/2 activation and NF-κB transactivation impaired by RAGE knockdown. Moreover, the stimulation of pro-inflammatory cytokines expression by eHSP70 was inhibited in RAGE-silenced cells. Finally, conditioned medium of eHSP70-treated A549 cells caused differential effects in monocytes cytokine expression when A549 RAGE expression is inhibited. Conclusions: Our results evidence eHSP70 as a novel RAGE agonist capable of influence the cross-talk between cancer and immune system cells.


2021 ◽  
Vol 11 (13) ◽  
pp. 5763
Author(s):  
Tayyebeh Ghaffari ◽  
Solmaz Asnaashari ◽  
Ebrahim Irannejad ◽  
Abbas Delazar ◽  
Safar Farajnia ◽  
...  

Lung cancer is one of the leading causes of cancer-related mortality worldwide. Although effective clinical drugs for treating advanced stages are available, interest in alternative herbal medicines has gained momentum. Herbal extracts are potent antioxidants that reportedly inhibit the growth of various cancer cell lines. In the present study, we investigated the effects of essential oils and hexane, methanolic, and aqueous extracts, obtained from various parts (bark, needles, and pollen) of Pinus eldarica against human lung cancer (A549) cells. First, the DPPH radical scavenging activities of P. eldarica extracts and essential oils were examined, which revealed that methanolic extracts presented higher antioxidant activity than the other extracts and essential oils. Next, A549 cells were exposed to various concentrations of the extracts and essential oils for 48 h. P. eldarica extracts/essential oil-treated lung cancer cells demonstrated a significant decrease in cell proliferation, along with an induction of apoptotic cell death, particularly, the pollen hexane extract, bark essential oil, and methanolic needle extract showed superior results, with IC50 values of 31.7, 17.9, and 0.3 μg/mL, respectively. In the cell cycle analysis, treatment of A549 cells with the methanolic needle and pollen hexane extracts led to apoptosis and accumulation of cells in the sub-G1 phase. Further, exposure to the bark essential oil and methanolic needle extract decreased the cell population in the G2/M phase. Notably, treatment with the pollen hexane extract, bark essential oil, and methanolic needle extract resulted in caspase-3 activation, poly (ADP-ribose) polymerase cleavage, Bcl-2 downregulation, and Bax and p53 regulation in A549 cells. Furthermore, these extracts and essential oils decreased the migration, and colony formation of A549 cells. These findings provide experimental evidence for a new therapeutic effect of P. eldarica against human lung cancer and suggest P. eldarica as a potential chemopreventive natural resource for developing novel cancer therapeutics.


Sign in / Sign up

Export Citation Format

Share Document