scholarly journals Understanding the Impact of Aberrant Splicing in Coagulation Factor V Deficiency

2019 ◽  
Vol 20 (4) ◽  
pp. 910
Author(s):  
Elvezia Paraboschi ◽  
Marzia Menegatti ◽  
Flora Peyvandi ◽  
Stefano Duga ◽  
Rosanna Asselta

Rare inherited coagulation disorders (RICDs) are congenital deficiencies of the plasma proteins that are involved in blood coagulation, which generally lead to lifelong bleeding manifestations. These diseases are generally qualitative and/or quantitative defects that are associated with monoallelic or biallelic mutations in the relevant gene. Among RICDs, factor V (FV) deficiency is one of the least characterized at the molecular level. Here, we investigated four unrelated patients with reduced plasma FV levels (three severe, one mild), which were associated with a moderately severe bleeding tendency. Sequence analysis of the FV gene identified seven different variants, five hitherto unknown (p.D1669G, c.5789-11C>A, c.5789-12C>A, c.5789-5T>G, and c.6528G>C), and two previously reported (c.158+1G>A and c.5789G>A). The possible pathogenic role of the newly identified missense variant was studied by in silico approaches. The remaining six genetic defects (all putative splicing mutations) were investigated for their possible effects on pre-mRNA splicing by transient transfection experiments in HeLa cells with plasmids expressing appropriate hybrid minigenes. The preparation of minigene constructs was instrumental to demonstrate that the two adjacent variants c.5789-11C>A and c.5789-12C>A are indeed present in cis in the analyzed FV-deficient patient (thus leading to the c.5789-11_12CC>AA mutation). Ex vivo experiments demonstrated that each variant causes either a skipping of the relevant exon or the activation of cryptic splice sites (exonic or intronic), eventually leading to the introduction of a premature termination codon.

Blood ◽  
2002 ◽  
Vol 99 (2) ◽  
pp. 702-705 ◽  
Author(s):  
Éva Ajzner ◽  
István Balogh ◽  
Teréz Szabó ◽  
Anikó Marosi ◽  
Gizella Haramura ◽  
...  

Abstract A male infant with severe bleeding tendency had undetectable factor V activity. Sequence analysis of the proband's DNA revealed one base deletion in exon 13 (2952delT) and one base insertion in exon 16 (5493insG) in heterozygous form. Both mutations introduced a frameshift and a premature stop at codons 930 and 1776, respectively. The proband's father and mother were heterozygous for 2952delT and for 5493insG, respectively. Both mutations would result in the synthesis of truncated proteins lacking complete light chain or its C-terminal part. In the patient's plasma, no factor V light chain was detected by enzyme-linked immunosorbent assay. The N-terminal portion of factor V containing the heavy chain, and the connecting B domain was severely reduced but detectable (1.7%). A small amount of truncated factor V–specific protein with a molecular weight ratio of 236 kd could be immunoprecipitated from the plasma and detected by Western blotting. This protein, factor VDebrecen, corresponds to the translated product of exon 16 mutant allele.


2002 ◽  
Vol 88 (10) ◽  
pp. 576-582 ◽  
Author(s):  
Raed Al Dieri ◽  
Flora Peyvandi ◽  
Elena Santagostino ◽  
Muriel Giansily ◽  
Pier Mannuccio Mannucci ◽  
...  

SummaryWe investigated the relation between clotting factor concentration, the parameters of the thrombin generation curve (the thrombogram) and the severity of clinically observed bleeding in patients with congenital deficiency of prothrombin (n = 21), factor V (n = 22), factor VII (n = 22), factor X (n = 10), factor XI (n = 7) and factor XII (n = 6). The parameters used were: area under the curve (endogenous thrombin potential, ETP), peak concentration of thrombin attained and lag time before manifest formation.Peak height and ETP varied linearly with the concentration of prothrombin. For the other factors these parameters hyperbolically approached to the 100% limit with increasing clotting factor concentration. Half normal ETP was seen at about the following concentrations: prothrombin (50%), factor V (1%), factor VII (2%), factor X (5%) and factor XI (1%). As a rule, the peak height was somewhat more sensitive to clotting factor decrease than the ETP was.In all the patients with severe bleeding symptoms the ETP was less than 20% of normal. Bleeding tendency was absent or mild in patients with an ETP of 30% or higher. This value (except for prothrombin) is already obtained at concentrations of clotting factor of 1%-2%, which corroborates the clinical observation that a severe bleeding tendency is only seen in severe clotting factor deficiencies (less than 1%). The one exception was a patient with factor VII deficiency and severe bleeding, who showed a normal ETP value, albeit with a decreased peak height and a prolonged lag-time.


2020 ◽  
pp. jmedgenet-2020-106833
Author(s):  
Valeria Morbidoni ◽  
Emanuele Agolini ◽  
Kevin C Slep ◽  
Luca Pannone ◽  
Daniela Zuccarello ◽  
...  

BackgroundDysfunction in non-motile cilia is associated with a broad spectrum of developmental disorders characterised by clinical heterogeneity. While over 100 genes have been associated with primary ciliopathies, with wide phenotypic overlap, some patients still lack a molecular diagnosis.ObjectiveTo investigate and functionally characterise the molecular cause of a malformation disorder observed in two sibling fetuses characterised by microphthalmia, cleft lip and palate, and brain anomalies.MethodsA trio-based whole exome sequencing (WES) strategy was used to identify candidate variants in the TOGARAM1 gene. In silico, in vitro and in vivo (Caenorhabditis elegans) studies were carried out to explore the impact of mutations on protein structure and function, and relevant biological processes.ResultsTOGARAM1 encodes a member of the Crescerin1 family of proteins regulating microtubule dynamics. Its orthologue in C. elegans, che-12, is expressed in a subset of sensory neurons and localises in the dendritic cilium where it is required for chemosensation. Nematode lines harbouring the corresponding missense variant in TOGARAM1 were generated by CRISPR/Cas9 technology. Although chemotaxis ability on a NaCl gradient was not affected, che-12 point mutants displayed impaired lipophilic dye uptake, with shorter and altered cilia in sensory neurons. Finally, in vitro analysis of microtubule polymerisation in the presence of wild-type or mutant TOG2 domain revealed a faster polymerisation associated with the mutant protein, suggesting aberrant tubulin binding.ConclusionsOur data are in favour of a causative role of TOGARAM1 variants in the pathogenesis of this novel disorder, connecting this gene with primary ciliopathy.


Author(s):  
Akitada Ichinose ◽  
Tsukasa Osaki ◽  
Masayoshi Souri

AbstractCoagulation factor V (or FV for the purpose of medical safety) is an essential cofactor of coagulation factor X in the common pathway of coagulation; severe FV deficiency leads to a bleeding tendency. Although both congenital and acquired FV deficiencies are widely recognized, FV deficiency also presents as an autoimmune disorder. A nationwide survey on autoimmune coagulation factor deficiencies (AiCFDs) conducted in Japan by our Japanese Collaborative Research Group identified 24 new patients with autoimmune FV deficiency (AiFVD) in the past 5 years. Furthermore, our extensive literature search confirmed that 177 AiFVD cases have been reported in previous articles published from Japan. Patients with AiFVD in Japan were predominantly men, with age similar to those with other AiCFDs. AiFVD was confirmed as a relatively mild type of bleeding diathesis, associated with lower mortality rate than that for AiFVD and other AiCFDs reported in previous studies. Patients with AiFVD had variable FV inhibitor titers and both neutralizing anti-FV autoantibodies and nonneutralizing counterparts. Although spontaneous resolution occurs in some patients, timely initiation of hemostatic and immunosuppressive therapies helps arrest the bleeding and eliminate anti-FV antibodies, resulting in a high cumulative recovery rate. Immunological anti-FV antibody detection is recommended to avoid missing AiFVD cases for the presence of nonneutralizing anti-FV autoantibodies. Further investigation is necessary to clarify the long-term prognosis and optimal management of AiFVD.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4033-4033
Author(s):  
Carol D. Jones ◽  
Fernando Negro ◽  
Katherine Darnell ◽  
James L. Zehnder

Abstract The gene for coagulation Factor V (FV) is located on chromosome 1q23. FV deficiency shows an autosomal recessive mode of inheritance; heterozygotes are generally not clinically affected. The homozygous clinical phenotype occurs in approximately 1 per million individuals with variable severity of bleeding. Thus, genotype-phenotype correlations are likely to shed light on functionally important residues of FV. Here we describe a case of FV deficiency with a severe bleeding phenotype. The proband is a male infant from Argentina. His parents are unrelated. He was born healthy with no bleeding from the umbilical stump or other symptoms. He presented at eight months with a CNS hemorrhage, then suffered a second massive subdural bleed at nine months of age. Both episodes required surgical drainage and treatment with fresh frozen plasma He continues to receive prophylactic FFP infusions and has some residual neurologic impairment. The proband’s FV activity ranges from 2–14%. Two siblings are unaffected. His father’s FV activity is 50% and his mother’s is 70%. We performed DNA sequencing spanning the entire coding region of the proband’s FV gene and found two heterozygous mutations: a heterozygous single base pair deletion, del 2952T in exon 13, located in the B-domain of the FV protein, causing a frameshift mutation followed by a premature termination codon 3 amino acids downstream; and a novel 3-bp deletion in exon 10. This deletion is in-frame and results in the deletion of Y478. The del 2952T frameshift mutation was present in the father, while the del Y478 mutation was present in the mother. Y478 is in the A2 domain of FV and adjacent to another tyrosine, Y477. Evidence suggests that these tyrosine residues are important for co-factor function. Tyrosine residue sulfation has been shown to be required for full activity of the homologous co-factor, FVIII, as well as for hirudin. These sulfated tyrosines and surrounding acidic amino acids have been proposed to be important in interactions with the thrombin anion binding exosite; in the case of hirudin, sulfation of a carboxy-terminal tyrosine increases the affinity for thrombin 10-fold. The homologous tyrosines, Y718 and Y719 appear to be sulfated in FVIII. FV has been shown to be sulfated, but the precise location of the FV sulfation sites has not yet been determined. One of this patient’s FV alleles is nonfunctional due to a frameshift and a premature trancation of translation. With respect to the other allele, we hypothesize that, like FVIII, one or both of FV tyrosines 477 and 478 is sulfated, and that deletion of Y478 may result in disruption of FV co-factor function. In vitro mutagenesis and expression studies to characterize the functional consequences of the del Y478 and/or del Y477 are in progress.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1764-1764
Author(s):  
Keiko Shinozawa ◽  
Kagehiro Amano ◽  
Takashi Suzuki ◽  
Hiroshi Inaba ◽  
Katsuyuki Fukutake

Abstract Coagulation factor V (FV) deficiency is a rare autosomal recessive bleeding disorder. It is poor correlation between FV levels in plasma and the severity of bleeding tendency. In the present study, we identified 5 mutations in the FV gene (F5) in 5 unrelated Japanese patients with reduced plasma FV activities associated with inherited FV deficiency. Their bleeding tendencies varied in severity from asymptomatic to severe. We hypothesized that the severity of bleeding symptoms with severe FV deficiency is correlated with FV levels in platelets, and performed recombinant mutant proteins expression experiments and analyzed of platelet FV. The data concerning 5 patient’s FV levels in plasma and the bleeding symptoms are given in Table. The F5 mutations in 5 Japanese patients were identified by direct sequencing. One of the 5 patients was a compound heterozygote for FV mutations and carried a 5-base pair (bp) deletion in exon 22 (del.ACCCT) and V1813M. The other 4 patients were homozygous for a D68H, N468S, V1813M, and R2174L mutations, respectively. Four mutations except V1813M are newly identified mutations. These mutations were introduced independently by site-directed mutagenesis into a pMT2/FV mammalian expression plasmid containing the full-length FV cDNA, and the wild-type and mutant FV proteins were expressed in HEK293 cells. In the conditioned media, FV specific activities of the FV-D68H, FV-N468S, FV-V1813M, FV-R2174L, and 5bp del. mutants were an approximately 22%, 81%, 28%, 40%, and 19% of wild-type, respectively. On the other hand, analysis of platelet from patient by using RT-PCR showed that platelet F5 mRNA of FV-R2174L and FV-N468S was equal amount to that of normal subjects, although the amount of FV-V1813M platelet F5 mRNA was reduced. Platelet FV protein from patients was analyzed by western blotting and ELISA. Although the amount of platelet FV-R2174L protein was equal to that of normal platelets, platelet FV-V1813M protein was considerably reduced. In addition, the amount of FV-N468S protein in platelet was observed between that of normal subjects and FV-V1813M. These results indicate that the fact that sufficient amounts of FV are stored in platelet is required for local hemostasis. The results of FV-R2174L suggest that both functionality and amount of FV-R2174L in platelet is enough to cope with local bleeding, resulting very mild bleeding tendency. On the basis of present findings, we conclude that the severity of bleeding due to severe FV deficiency is correlated with not only plasma FV level, but also platelet FV. Five patient’s FV levels in plasma and the bleeding symptoms Patient No. Mutation FV activity (%) FV antigen (%) Bleeding symptoms 1 D68H 4 4 asymptomatic 2 N468S 3 3 asymptomatic 3 V1813M & 5-bp deletion <1 9 severe 4 V1813M <1 4 moderate 5 R2174L 1 5 very mild


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2232-2232
Author(s):  
Tomoko Matsumoto ◽  
Keiji Nogami ◽  
Kenichi Ogiwara ◽  
Midori Shima

Abstract Abstract 2232 Development of acquired factor V (aFV) inhibitors rarely occurs, but its clinical phenotype varies from asymptomatic to life-threatening bleeding. A recent systematic report describes that little bleeding symptom is present in 20% at the diagnosis for patients with acquired FV (aFV) inhibitors. However, the coagulation function and its mechanism(s) on the different clinical phenotype are poorly understood. In this study, we examined the coagulation function on aFV inhibitors by using comprehensive coagulation assays, thrombin generation test (TGT) and clot waveform analysis (CWA). TGT was performed using tissue factor (0.5 pM), phospholipid (PL; 4 μM) and ellagic acid (0.3 μM). CWA, that evaluates the parameters of min1 as maximum coagulation velocity and min2 as maximum coagulation acceleration, was performed on MDA-II® system. We tested 7 cases with aFV inhibitors. Four cases were asymptomatic (FV:C; 3.6±3.4 IU/dl, inhibitor 5.8±3.3 BU/ml: non-B group), and 3 cases had severe bleeding tendency (2.9 ± 4.5 IU/dl, 66 ±51 BU/ml; B group). In TGT, all cases in both groups little showed the thrombin generation within 60 min, independently of FV:C level and clinical phenotype, showing little informative in functional evaluation for aFV inhibitors. However, in a PT-based CWA, the clotting time observed in non-B group was markedly shorted compared to that in B group (62.2±17.0/112±15 sec; p=0.006). In addition, both parameters in non-B group were significantly greater than those in B group ( min1 ; 2.89±1.10/0.98±0.29 dT/dt; p=0.014) and ( min2 ; 0.75±0.40/0.15±0.07 d2T/dt2; p=0.028), suggesting that CWA was useful for the prediction and monitoring of hemorrhagic symptoms in patients with aFV inhibitors. To confirm the distinct mechanism(s) on both groups, the IgGs from aFV plasmas were immune-purified using protein G-Sepharose. In the reactant mixtures with normal plasma and aFV IgGs, all parameters obtained in CWA were similar to those obtained in patients' plasmas. SDS-PAGE and western blotting revealed that 2 cases in B group reacted the light chain of FV(a). However, 2 cases in non-B group reacted the heavy chain, and other 2 cases were reacted with both chains (heavy>light), indicative of the distinct epitopes of IgGs in both groups. Since the light chain contains the PL-binding site(s), the effects of aFV IgGs were examined on the FV-PL binding in an ELISA. All IgGs in B group inhibited this binding (by 40–90%) dose-dependently, whilst little affected in non-B group. Since FV acts as a cofactor of activated protein C (APC) on inactivation of FVIIIa, the effects of aFV IgGs on the ability of APC on FVIIIa inactivation were examined using intrinsic FXa generation assay. The APC sensitivity ratio (APCsr) was expressed as ratio of amounts of generated FXa in the absence of APC relative to its presence. A low level of APCsr indicates the reduction in FVIIIa inactivation, consequently APC resistance. APCsr values in B group were >2.0 within normal range, whilst those in non-B group were decreased to 1.5, supportive of APCR in non-B group. Based on these findings, we propose that severe bleeding tendency in B group would be appeared through negligible prothrombinase activity, since aFV IgGs blocked the FV(a)-PL binding. While, clinical phenotype in non-B group would be asymptomatic, since aFV IgGs unaffect the FV(a)-PL binding and further cause the APC resistance. In addition, various clinical phenotypes in aFV inhibitors appear to be dependent on the recognizing epitope of these IgGs. Disclosures: No relevant conflicts of interest to declare.


1994 ◽  
Vol 5 (1) ◽  
pp. 133-138 ◽  
Author(s):  
W. M. Smid ◽  
J. T. M. de Wolf ◽  
J. H. Nijland ◽  
V. J. J. Bom ◽  
J. van der Meer

2016 ◽  
Vol 33 (6) ◽  
pp. 1517-1526 ◽  
Author(s):  
Andrew J. Gale ◽  
Vikas Bhat ◽  
Jean-Luc Pellequer ◽  
John H. Griffin ◽  
Laurent O. Mosnier ◽  
...  

2021 ◽  
Vol 9 ◽  
pp. 2050313X2098841
Author(s):  
Yuichiro Saikawa ◽  
Atsunobu Tsunoda ◽  
Naoko Sata ◽  
Takashi Anzai

Severe bleeding after a tonsillectomy may cause airway obstruction and be life-threatening. We report post-tonsillectomy bleeding in a 32-year-old patient with hemophilia A, who had not been aware of his disease for more than 30 years. He underwent tonsillectomy for recurrent tonsillitis. He denied episodes of bleeding tendency. The preoperative workup was normal, including platelet count, prothrombin time, and activated partial thromboplastin time. The surgery itself was uneventful, but severe bleeding from the inferior pole of the tonsillar bed developed 7 days after surgery. Emergency hemostasis was performed under general anesthesia in the operating room. The patient then remembered several episodes of bleeding tendency. Coagulation tests revealed a mild lack of coagulation factor VIII to 35%, and a diagnosis of hemophilia A was made. Hemophilia might only be found after surgery and can cause life-threatening complications. However, latent hemophilia detected after a tonsillectomy in a 32-year-old adult is very rare. A careful history of bleeding tendency is important to achieve a diagnosis of coagulopathy, perform a safer surgery, and prevent postoperative complications.


Sign in / Sign up

Export Citation Format

Share Document