scholarly journals Exogenous RNAs for Gene Regulation and Plant Resistance

2019 ◽  
Vol 20 (9) ◽  
pp. 2282 ◽  
Author(s):  
Alexandra S. Dubrovina ◽  
Konstantin V. Kiselev

Recent investigations documented that plants can uptake and process externally applied double-stranded RNAs (dsRNAs), hairpin RNAs (hpRNAs), and small interfering RNAs (siRNAs) designed to silence important genes of plant pathogenic viruses, fungi, or insects. The exogenously applied RNAs spread locally and systemically, move into the pathogens, and induce RNA interference-mediated plant pathogen resistance. Recent findings also provided examples of plant transgene and endogene post-transcriptional down-regulation by complementary dsRNAs or siRNAs applied onto the plant surfaces. Understanding the plant perception and processing of exogenous RNAs could result in the development of novel biotechnological approaches for crop protection. This review summarizes and discusses the emerging studies reporting on exogenous RNA applications for down-regulation of essential fungal and insect genes, targeting of plant viruses, or suppression of plant transgenes and endogenes for increased resistance and changed phenotypes. We also analyze the current understanding of dsRNA uptake mechanisms and dsRNA stability in plant environments.

Acta Naturae ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 13-21 ◽  
Author(s):  
S. Y. Morozov ◽  
A. G. Solovyev ◽  
N. O. Kalinina ◽  
M. E. Taliansky

Recent studies have shown that plants are able to express the artificial genes responsible for the synthesis of double-stranded RNAs (dsRNAs) and hairpin double-stranded RNAs (hpRNAs), as well as uptake and process exogenous dsRNAs and hpRNAs to suppress the gene expression of plant pathogenic viruses, fungi, or insects. Both endogenous and exogenous dsRNAs are processed into small interfering RNAs (siRNAs) that can spread locally and systemically through the plant, enter pathogenic microorganisms, and induce RNA interference-mediated pathogen resistance in plants. There are numerous examples of the development of new biotechnological approaches to plant protection using transgenic plants and exogenous dsRNAs. This review summarizes new data on the use of transgenes and exogenous dsRNAs for the suppression of fungal and insect virulence genes, as well as viruses to increase the resistance of plants to these pathogens. We also analyzed the current ideas about the mechanisms of dsRNA processing and transport in plants.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 82
Author(s):  
Michael Taliansky ◽  
Viktoria Samarskaya ◽  
Sergey K. Zavriev ◽  
Igor Fesenko ◽  
Natalia O. Kalinina ◽  
...  

In recent years, non-coding RNAs (ncRNAs) have gained unprecedented attention as new and crucial players in the regulation of numerous cellular processes and disease responses. In this review, we describe how diverse ncRNAs, including both small RNAs and long ncRNAs, may be used to engineer resistance against plant viruses. We discuss how double-stranded RNAs and small RNAs, such as artificial microRNAs and trans-acting small interfering RNAs, either produced in transgenic plants or delivered exogenously to non-transgenic plants, may constitute powerful RNA interference (RNAi)-based technology that can be exploited to control plant viruses. Additionally, we describe how RNA guided CRISPR-CAS gene-editing systems have been deployed to inhibit plant virus infections, and we provide a comparative analysis of RNAi approaches and CRISPR-Cas technology. The two main strategies for engineering virus resistance are also discussed, including direct targeting of viral DNA or RNA, or inactivation of plant host susceptibility genes. We also elaborate on the challenges that need to be overcome before such technologies can be broadly exploited for crop protection against viruses.


2020 ◽  
Vol 21 (3) ◽  
pp. 179-193
Author(s):  
Chatterjee Anupriya ◽  
Nirwan Shradha ◽  
Bandyopadhyay Prasun ◽  
Agnihotri Abha ◽  
Sharma Pankaj ◽  
...  

: Oilseed brassicas stand as the second most valuable source of vegetable oil and the third most traded one across the globe. However, the yield can be severely affected by infections caused by phytopathogens. White rust is a major oomycete disease of oilseed brassicas resulting in up to 60% yield loss globally. So far, success in the development of oomycete resistant Brassicas through conventional breeding has been limited. Hence, there is an imperative need to blend conventional and frontier biotechnological means to breed for improved crop protection and yield. : This review provides a deep insight into the white rust disease and explains the oomycete-plant molecular events with special reference to Albugo candida describing the role of effector molecules, A. candida secretome, and disease response mechanism along with nucleotide-binding leucine-rich repeat receptor (NLR) signaling. Based on these facts, we further discussed the recent progress and future scopes of genomic approaches to transfer white rust resistance in the susceptible varieties of oilseed brassicas, while elucidating the role of resistance and susceptibility genes. Novel genomic technologies have been widely used in crop sustainability by deploying resistance in the host. Enrichment of NLR repertoire, over-expression of R genes, silencing of avirulent and disease susceptibility genes through RNA interference and CRSPR-Cas are technologies which have been successfully applied against pathogen-resistance mechanism. The article provides new insight into Albugo and Brassica genomics which could be useful for producing high yielding and WR resistant oilseed cultivars across the globe.


Plant Disease ◽  
2020 ◽  
Author(s):  
Kai Sun ◽  
Yan Liang ◽  
Xueting Zhong ◽  
Xuenan Hu ◽  
Pengjun Zhang ◽  
...  

Virus-like symptoms, including leaf deformation and curling, were observed on nightshade (Solanum nigrum) in Zhejiang province, China. To identify possible pathogenic viruses or viroids, a symptomatic sample was subjected to deep sequencing of small interfering RNAs. Assembly of the resulting sequences led to identification of a novel geminivirus, provisionally designated nightshade curly top virus (NCTV). The complete genomic DNA sequence is 2,867 nucleotides that encodes seven open reading frames. NCTV shares 77.1 % overall nucleotide sequence identity, 86.3 % coat protein amino acid, and 78.9 % replication-associated protein amino acid sequence identity with Topocuvirus tomato pseudo-curly top virus (TPCTV). Polymerase chain reaction screening of nightshade field isolates indicated that NCTV is widely distributed in Zhejiang. Agrobacterium-mediated inoculation revealed that NCTV is highly infectious to Nicotiana benthamiana, Solanum nigrum, Solanum lycopersicum, and Solanum tuberosum. Based on pairwise comparisons and phylogenetic analyses, NCTV is proposed as a provisional member of the genus Topocuvirus.


Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 669 ◽  
Author(s):  
Adriana E. Cisneros ◽  
Alberto Carbonell

Artificial small RNAs (art-sRNAs), such as artificial microRNAs (amiRNAs) and synthetic trans-acting small interfering RNAs (syn-tasiRNAs), are highly specific 21-nucleotide small RNAs designed to recognize and silence complementary target RNAs. Art-sRNAs are extensively used in gene function studies or for improving crops, particularly to protect plants against viruses. Typically, antiviral art-sRNAs are computationally designed to target one or multiple sites in viral RNAs with high specificity, and art-sRNA constructs are generated and introduced into plants that are subsequently challenged with the target virus(es). Numerous studies have reported the successful application of art-sRNAs to induce resistance against a large number of RNA and DNA viruses in model and crop species. However, the application of art-sRNAs as an antiviral tool has limitations, such as the difficulty to predict the efficacy of a particular art-sRNA or the emergence of virus variants with mutated target sites escaping to art-sRNA-mediated degradation. Here, we review the different classes, features, and uses of art-sRNA-based tools to induce antiviral resistance in plants. We also provide strategies for the rational design of antiviral art-sRNAs and discuss the latest advances in developing art-sRNA-based methodologies for enhanced resistance to plant viruses.


2010 ◽  
Author(s):  
Munir Mawassi ◽  
Valerian Dolja

RNA silencing is a defense mechanism that functions against virus infection and involves sequence-specific degradation of viral RNA. Diverse RNA and DNA viruses of plants encode RNA silencing suppressors (RSSs), which, in addition to their role in viral counterdefense, were implicated in the efficient accumulation of viral RNAs, virus transport, pathogenesis, and determination of the virus host range. Despite rapidly growing understanding of the mechanisms of RNA silencing suppression, systematic analysis of the roles played by diverse RSSs in virus biology and pathology is yet to be completed. Our research was aimed at conducting such analysis for two grapevine viruses, Grapevine virus A (GVA) and Grapevine leafroll-associated virus-2 (GLRaV- 2). Our major achievements on the previous cycle of BARD funding are as follows. 1. GVA and GLRaV-2 were engineered into efficient gene expression and silencing vectors for grapevine. The efficient techniques for grapevine infection resulting in systemic expression or silencing of the recombinant genes were developed. Therefore, GVA and GLRaV-2 were rendered into powerful tools of grapevine virology and functional genomics. 2. The GVA and GLRaV-2 RSSs, p10 and p24, respectively, were identified, and their roles in viral pathogenesis were determined. In particular, we found that p10 functions in suppression and pathogenesis are genetically separable. 3. We revealed that p10 is a self-interactive protein that is targeted to the nucleus. In contrast, p24 mechanism involves binding small interfering RNAs in the cytoplasm. We have also demonstrated that p10 is relatively weak, whereas p24 is extremely strong enhancer of the viral agroinfection. 4. We found that, in addition to the dedicated RSSs, GVA and GLRaV-2 counterdefenses involve ORF1 product and leader proteases, respectively. 5. We have teamed up with Dr. Koonin and Dr. Falnes groups to study the evolution and function of the AlkB domain presents in GVA and many other plant viruses. It was demonstrated that viral AlkBs are RNA-specific demethylases thus providing critical support for the biological relevance of the novel process of AlkB-mediated RNA repair. 


BioEssays ◽  
1989 ◽  
Vol 10 (6) ◽  
pp. 179-186 ◽  
Author(s):  
T. Michael ◽  
A. Wilson

2008 ◽  
Vol 83 (3) ◽  
pp. 1332-1340 ◽  
Author(s):  
Edgar A. Rodríguez-Negrete ◽  
Jimena Carrillo-Tripp ◽  
Rafael F. Rivera-Bustamante

ABSTRACT RNA silencing in plants is a natural defense system mechanism against invading nucleic acids such as viruses. Geminiviruses, a family of plant viruses characterized by a circular, single-stranded DNA genome, are thought to be both inducers and targets of RNA silencing. Some natural geminivirus-host interactions lead to symptom remission or host recovery, a process commonly associated with RNA silencing-mediated defense. Pepper golden mosaic virus (PepGMV)-infected pepper plants show a recovery phenotype, which has been associated with the presence of virus-derived small RNAs. The results presented here suggest that PepGMV is targeted by both posttranscriptional and transcriptional gene silencing mechanisms. Two types of virus-related small interfering RNAs (siRNAs) were detected: siRNAs of 21 to 22 nucleotides (nt) in size that are related to the coding regions (Rep, TrAP, REn, and movement protein genes) and a 24-nt population primarily associated to the intergenic regions. Methylation levels of the PepGMV A intergenic and coat protein (CP) coding region were measured by a bisulfite sequencing approach. An inverse correlation was observed between the methylation status of the intergenic region and the concentration of viral DNA and symptom severity. The intergenic region also showed a methylation profile conserved in all times analyzed. The CP region, on the other hand, did not show a defined profile, and its methylation density was significantly lower than the one found on the intergenic region. The participation of both PTGS and TGS mechanisms in host recovery is discussed.


2006 ◽  
Vol 87 (8) ◽  
pp. 2387-2395 ◽  
Author(s):  
Z. Sh. Zhou ◽  
M. Dell'Orco ◽  
P. Saldarelli ◽  
C. Turturo ◽  
A. Minafra ◽  
...  

Higher plants use post-transcriptional gene silencing (PTGS), an RNA-degradation system, as a defence mechanism against viral infections. To counteract this, plant viruses encode and express PTGS suppressor proteins. Four of the five proteins encoded by the Grapevine virus A (GVA) genome were screened using a green fluorescent protein (GFP)-based transient expression assay, and the expression product of ORF5 (protein p10) was identified as a suppressor of silencing. ORF5 p10 suppressed local and systemic silencing induced by a transiently expressed single-stranded sense RNA. This protein was active towards both a transgene and exogenous GFP mRNAs. Ectopic expression of GVA-ORF5 by a Potato virus X vector enhanced symptom severity. The findings that p10 markedly reduces the levels of small interfering RNAs (siRNAs) and that the recombinant protein is able to bind single-stranded and double-stranded forms of siRNAs and microRNAs, suggest the existence of a potential mechanism of suppression based on RNA sequestering.


Sign in / Sign up

Export Citation Format

Share Document