scholarly journals Function and Transcriptional Regulation of Bovine TORC2 Gene in Adipocytes: Roles of C/EBP, XBP1, INSM1 and ZNF263

2019 ◽  
Vol 20 (18) ◽  
pp. 4338 ◽  
Author(s):  
Khan ◽  
Raza ◽  
Junjvlieke ◽  
Xiaoyu ◽  
Garcia ◽  
...  

The TORC2 gene is a member of the transducer of the regulated cyclic adenosine monophosphate (cAMP) response element binding protein gene family, which plays a key role in metabolism and adipogenesis. In the present study, we confirmed the role of TORC2 in bovine preadipocyte proliferation through cell cycle staining flow cytometry, cell counting assay, 5-ethynyl-2′-deoxyuridine staining (EdU), and mRNA and protein expression analysis of proliferation-related marker genes. In addition, Oil red O staining analysis, immunofluorescence of adiponectin, mRNA and protein level expression of lipid related marker genes confirmed the role of TORC2 in the regulation of bovine adipocyte differentiation. Furthermore, the transcription start site and sub-cellular localization of the TORC2 gene was identified in bovine adipocytes. To investigate the underlying regulatory mechanism of the bovine TORC2, we cloned a 1990 bp of the 5' untranslated region (5′UTR) promoter region into a luciferase reporter vector and seven vector fragments were constructed through serial deletion of the 5′UTR flanking region. The core promoter region of the TORC2 gene was identified at location −314 to −69 bp upstream of the transcription start site. Based on the results of the transcriptional activities of the promoter vector fragments, luciferase activities of mutated fragments and siRNAs interference, four transcription factors (CCAAT/enhancer-binding protein C/BEP, X-box binding protein 1 XBP1, Insulinoma-associated 1 INSM1, and Zinc finger protein 263 ZNF263) were identified as the transcriptional regulators of TORC2 gene. These findings were further confirmed through Electrophoretic Mobility Shift Assay (EMSA) within nuclear extracts of bovine adipocytes. Furthermore, we also identified that C/EBP, XBP1, INSM1 and ZNF263 regulate TORC2 gene as activators in the promoter region. We can conclude that TORC2 gene is potentially a positive regulator of adipogenesis. These findings will not only provide an insight for the improvement of intramuscular fat in cattle, but will enhance our understanding regarding therapeutic intervention of metabolic syndrome and obesity in public health as well.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2254-2254
Author(s):  
Susan E. Shetzline ◽  
Joseph Conlon ◽  
Cezary Swider ◽  
Lindsay Thalheim ◽  
Alan M. Gewirtz

Abstract The c-myb proto-oncogene encodes a transcription factor, Myb, which is essential for the growth and survival of normal and malignant hematopoietic cells. We, and others, have previously shown that malignant hematopoietic cells are more dependent on c-Myb function than are normal hematopoietic cells. Based on these findings, we hypothesized that c-Myb regulates a unique set of genes in leukemic cells that are required for their growth. To identify Myb gene targets, we performed a transcriptome analysis using human myeloid leukemic cells engineered to express a conditionally active dominant negative Myb (MERT). Analysis of the microarray data derived from these experiments revealed that when Myb activity was inhibited, neuromedin U (NmU), a neuropeptide involved in energy homeostasis, decreased in expression 5 fold compared to control cells, a result that was confirmed by quantitative real-time PCR. Combined, the microarray and quantitative real-time PCR data suggested that Myb directly regulates NmU gene expression in hematopoietic cells. To address this question in the absence of a formally defined human NmU promoter, we examined the DNA sequence upstream of the predicted transcription start site (as noted in Genbank accession #NM_006681) for potential Myb transcription factor binding motifs. After scanning the DNA sequence (~2kb) upstream of the predicted transcription start site, eleven potential Myb response elements (MREs) were identified. Of these MREs, five were identified as canonical (PyAAC(G/C)G). Our search also identified potential AML1, PU.1, CBP, STAT3, and STAT5 binding motifs within the human NmU promoter region. To determine if any of the potential MREs within the NmU promoter were functional, we first completed in vitro assays using luciferase reporter constructs followed by in vivo assays using chromatin immunoprecipitation (ChIP) assays. The luciferase reporter constructs were generated after we determined the actual transcription start of human NmU by primer extension assays. Using a Fam-labeled NmU specific primer that annealed proximal to the predicted transcription start site, we observed a 20-nucleotide difference between the predicted and actual transcription start of NmU. When all eleven potential MREs within the NmU promoter were upstream of luciferase, a 6-fold increase in luciferase activity was observed compared to empty vector. We next systematically mutated the MREs to determine which one(s) Myb bound directly. Thus far, the in vitro luciferase assay has identified MREs at −446 and −626, which are proximal to NmU’s transcription start as important for Myb-mediated expression. To determine the physiologic relevance of our in vitro studies, we performed ChIP assays. When chromatin from K562 cells, a human myeloid leukemia cell line, was immunoprecipitated with anti-c-Myb, we observed the expected PCR product using primer pairs that flanked select MREs. These same results were obtained in our positive control ChIP experiment in which the chromatin was immunoprecipitated with anti-acetyl histone 4 indicating that the promoter region of NmU is poised for transcription. Further characterization of the regulation of NmU gene expression in normal and malignant hematopoietic cells may yield new clues to Myb’s role in leukemogenesis and could suggest new therapeutic targets in human leukemia cells.


2021 ◽  
pp. 166813
Author(s):  
Eric J. Tomko ◽  
Olivia Luyties ◽  
Jenna K. Rimel ◽  
Chi-Lin Tsai ◽  
Jill O. Fuss ◽  
...  

2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Jieyun Hong ◽  
Shijun Li ◽  
Xiaoyu Wang ◽  
Chugang Mei ◽  
Linsen Zan

Sirtuins, NAD+-dependent deacylases and ADP-ribosyltransferases, are critical regulators of metabolism involved in many biological processes, and are involved in mediating adaptive responses to the cellular environment. SIRT4 is a mitochondrial sirtuin and has been shown to play a critical role in maintaining insulin secretion and glucose homeostasis. As a regulator of lipid homeostasis, SIRT4 can repress fatty acid oxidation and promote lipid anabolism in nutrient-replete conditions. Using real-time quantitative PCR (qPCR) to explore the molecular mechanisms of transcriptional regulation of bovine SIRT4 during adipocyte differentiation, we found that bovine SIRT4 is expressed at high levels in bovine subcutaneous adipose tissue. SIRT4 knockdown led to decreased expression of adipogenic differentiation marker genes during adipocyte differentiation. The core promoter of bovine SIRT4 was identified in the −402/−60 bp region of the cloned 2-kb fragment containing the 5′-regulatory region. Binding sites were identified in this region for E2F transcription factor-1 (E2F1), CCAAT/enhancer-binding protein β (CEBPβ), homeobox A5 (HOXA5), interferon regulatory factor 4 (IRF4), paired box 4 (PAX4), and cAMP responsive element-binding protein 1 (CREB1) by using Electrophoretic mobility shift assay (EMSA) and luciferase reporter gene assay. We also found that E2F1, CEBPβ, and HOXA5 transcriptionally activate SIRT4 expression, whereas, IRF4, PAX4, and CREB1 transcriptionally repress SIRT4 expression. We further verified that SIRT4 knockdown could affect the ability of these transcription factors (TFs) to regulate the differentiation of bovine adipocytes. In conclusion, our results shed light on the mechanisms underlying the transcriptional regulation of SIRT4 expression in bovine adipocytes.


2000 ◽  
Vol 348 (3) ◽  
pp. 675-686 ◽  
Author(s):  
Isabelle VAN SEUNINGEN ◽  
Michaël PERRAIS ◽  
Pascal PIGNY ◽  
Nicole PORCHET ◽  
Jean-Pierre AUBERT

Control of gene expression in intestinal cells is poorly understood. Molecular mechanisms that regulate transcription of cellular genes are the foundation for understanding developmental and differentiation events. Mucin gene expression has been shown to be altered in many intestinal diseases and especially cancers of the gastrointestinal tract. Towards understanding the transcriptional regulation of a member of the 11p15.5 human mucin gene cluster, we have characterized 3.55 kb of the 5ʹ-flanking region of the human mucin gene MUC5B, including the promoter, the first two exons and the first intron. We report here the promoter activity of successively 5ʹ-truncated sections of 956 bases of this region by fusing it to the coding region of a luciferase reporter gene. The transcription start site was determined by primer-extension analysis. The region upstream of the transcription start site is characterized by the presence of a TATA box at bases -32/-26, DNA-binding elements for transcription factors c-Myc, N-Myc, Sp1 and nuclear factor ĸB as well as putative activator protein (AP)-1-, cAMP-response-element-binding protein (CREB)-, hepatocyte nuclear factor (HNF)-1-, HNF-3-, TGT3-, gut-enriched Krüppel factor (GKLF)-, thyroid transcription factor (TTF)-1- and glucocorticoid receptor element (GRE)-binding sites. Intron 1 of MUC5B was also characterized, it is 2511 nucleotides long and contains a DNA segment of 259 bp in which are clustered eight tandemly repeated GA boxes and a CACCC box that bind Sp1. AP-2α and GATA-1 nuclear factors were also shown to bind to their respective cognate elements in intron 1. In transfection studies the MUC5B promoter showed a cell-specific activity as it is very active in mucus-secreting LS174T cells, whereas it is inactive in Caco-2 enterocytes and HT-29 STD (standard) undifferentiated cells. Within the promoter, maximal transcription activity was found in a segment covering the first 223 bp upstream of the transcription start site. Finally, in co-transfection experiments a transactivating effect of Sp1 on to MUC5B promoter was seen in LS174T and Caco-2 cells.


2003 ◽  
Vol 185 (17) ◽  
pp. 5158-5165 ◽  
Author(s):  
Takayuki Taniya ◽  
Jiro Mitobe ◽  
Shu-ichi Nakayama ◽  
Qi Mingshan ◽  
Kenji Okuda ◽  
...  

ABSTRACT The InvE protein positively regulates the expression of virulence genes ipaBCD in Shigella sonnei. The InvE has significant homology with ParB of plasmid P1, which is known as a plasmid partitioning factor with DNA binding ability. Although the DNA binding activity of InvE has been predicted, it is not known whether the DNA binding activity is necessary for type III secretion system-associated gene expression. In this study, we determined the transcription start site of the icsB-ipaBCD operon (ipa operon) and constructed a series of deletions of the icsB promoter region in the Escherichia coli K-12 background. The deletion study revealed that an 86-bp region upstream of the icsB transcription start site was essential for expression of the ipa operon, where the ParB binding motif (ParB BoxA-like sequence) was observed. Purified glutathione S-transferase-InvE fusion protein bound directly to the −93 to −54 region (designating the icsB transcription start site as nucleotide +1) containing the ParB BoxA-like sequence. These results indicated that InvE bound directly to the promoter region.


2006 ◽  
Vol 257 (1) ◽  
pp. 99-105 ◽  
Author(s):  
Yi-Xin Huo ◽  
Bei-Yan Nan ◽  
Cong-Hui You ◽  
Zhe-Xian Tian ◽  
Annie Kolb ◽  
...  

1987 ◽  
Author(s):  
Corolyn J Collins ◽  
Richard B Levene ◽  
Christina P Ravera ◽  
Marker J Dombalagian ◽  
David M Livingston ◽  
...  

Most patients with von Willebrand's disease appear to have a defect affecting the level of expression of the von Willebrand factor (vWf) gene. Thus, an understanding of the pathogenesis of von Willebrand's disease will require an analysis of the structure and function of the vWf gene in normals and in patients. To begin such analyses, we have screened a human genomic cosmid library with probes obtained from vWf cDNA and isolated a colinear segment spanning ≈175 kb in five overlapping clones. This segment extends ≈25 kb upstream and ≈5 kb downstream of the transcription start and stop sites for vWf mRNA, implying the vWf gene has a length of ≈150 kb. Within one of these clones, the vWf transcription initiation sites have been mapped. A portion of the promoter region has been sequenced, revealing a typical TATA box, a downstream CCAAT box, and a perfect downstream repeat of the 8 base pairs containing the major transcription start site. Primer extension analysis suggests that sequences contained within the downstream repeat of the transcription start site may be used as minor initiation sites in endothelial cells. Transfection studies are underway to evaluate the role of sequences within this promoter region in gene regulatory activity. Comparative restriction analyses of cloned and chromosomal DNA segments strongly suggests that no major alterations ocurred during cloning and that there is only one complete copy of the vWf gene in the human haploid genome. Similar analyses of DNA from vWf-expressing endothelial cells and non-expressing white blood cells suggests that no major rearrangements are associated with vWf gene expression. Finally, cross hybridization patterns among seven mammalian species suggests a strong conservation of genomic sequences encoding the plasma portion of vWf, but a lower degree of conservation of sequences encoding the N terminal region of provWf.


1998 ◽  
Vol 332 (3) ◽  
pp. 681-687 ◽  
Author(s):  
Shaun R. DONNELLY ◽  
Stephen E. MOSS

To gain insight into the molecular basis of annexin gene expression we have analysed the annexin I and VI gene promoters. A previously described 881 bp sequence immediately upstream of the annexin I transcription start site and a similar size fragment proximal to the annexin VI transcription start site both drove expression of the luciferase reporter gene in fibroblasts and epithelial cells. Neither promoter displayed any sensitivity to dexamethasone, suggesting that the putative glucocorticoid response element in the annexin I promoter is non-functional. Consistent with this, endogenous annexin I gene expression was unaffected by dexamethasone at the mRNA and protein levels in A431 cells. A series of 5´ deletions of the two promoters were examined to define the minimal active sequences. For annexin I this corresponded to a sequence approx. 150 bp upstream of the transcription start site that included CAAT and TATA boxes. Unexpectedly, the annexin VI promoter, which also contains CAAT and TATA boxes, was fully active in the absence of these elements, a 53 bp sequence between these boxes and the transcription start site having maximal activity. Electrophoretic mobility-shift assays with nuclear extracts from A431 and HeLa cells with probes corresponding to this region revealed an SP1-binding site. These results show that the annexin I and VI genes have individual modes of transcriptional regulation and that if either annexin I or annexin VI has an anti-inflammatory role, then this is in the absence of steroid-induced gene expression.


2006 ◽  
Vol 52 (11) ◽  
pp. 1136-1140 ◽  
Author(s):  
Sohail A Qureshi

Archaeal promoters contain a TATA-box, an adjacent upstream TFB-recognition element (BRE), and a downstream initiator (INR) region from which transcription originates. While the contribution of A-box and BRE to promoter strength is well established, the role of DNA sequences within the INR region and its vicinity on transcription efficiency and start site selection remains unclear. Here, I demonstrate using the strong Sulfolobus shibatae viral T6 promoter that either substitution of its natural sequence from –17 and beyond with plasmid DNA or introduction of point transversion mutations at +3, –2, –4, and –5 positions reduce promoter strength dramatically, whereas +1, –1, and –2 mutations influence the transcription start site. These data therefore reveal that the INR region plays a role as important as the BRE and the A-box in T6 gene transcription. Key words: Archaea, transcription, initiator (INR), Sulfolobus shibatae, core promoter.


2003 ◽  
Vol 372 (3) ◽  
pp. 831-839 ◽  
Author(s):  
Elisabetta LAMBERTINI ◽  
Letizia PENOLAZZI ◽  
Silvia GIORDANO ◽  
Laura DEL SENNO ◽  
Roberta PIVA

(O)estrogen receptor-α (ERα), a hormone-dependent transcription factor belonging to the steroid/thyroid-hormone-receptor superfamily, plays an essential role in the development and maintenance of the skeleton. Here we report the analysis of an unexplored sequence inside the bone-specific distal promoter F (PF) with respect to the regulation of ERα gene expression in bone. This sequence, 785 bp in size, is localized upstream of the assigned transcription start site of exon F, at −117140 bp from the originally described transcription start site +1. It contains a TA reach box, a conventional CAAT box and potential regulatory elements for many transcription factors, including Cbfa1 [OSE2 (osteoblast-specific element) core binding factor], GATA-1 [(A/T)GATA(A/G) binding protein], Sox5 [sex-determining region Y (SRY)-type HMG bOX protein, belonging to a subfamily of DNA-binding proteins with an HMG domain], Sry, AP1 (activator protein 1) and CP2 (activator of γ-globin). It is able to strongly activate the luciferase reporter gene in MG-63 osteoblastic-like cells, but not in MCF7 breast-cancer cells. This is in agreement with different transcripts that we found in the two cell types. The footprinting and electrophoretic mobility-shift assays (EMSAs) showed that, inside the region analysed, there were some sequences that specifically reacted to nuclear proteins isolated from MG-63 cells. In particular, we identified two regions, named PFa and PFb, that do not present binding sites for known transcription factors and that are involved in a strong DNA–protein interaction in MG-63, but not in MCF7, cells. The analysis of three transcription factors (GATA-1, Sry and Sox) that might bind the identified footprinted areas suggested a possible indirect role of these proteins in the regulation of ERα gene expression in bone. These data provide evidence for different promoter usage of the ERα gene through the recruitment of tissue-specific transcription activators and co-regulators.


Sign in / Sign up

Export Citation Format

Share Document