nonmuscle cell
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 2)

H-INDEX

13
(FIVE YEARS 1)

2020 ◽  
Vol 117 (47) ◽  
pp. 29691-29701 ◽  
Author(s):  
Francesco Chemello ◽  
Zhaoning Wang ◽  
Hui Li ◽  
John R. McAnally ◽  
Ning Liu ◽  
...  

Duchenne muscular dystrophy (DMD) is a fatal muscle disorder characterized by cycles of degeneration and regeneration of multinucleated myofibers and pathological activation of a variety of other muscle-associated cell types. The extent to which different nuclei within the shared cytoplasm of a myofiber may display transcriptional diversity and whether individual nuclei within a multinucleated myofiber might respond differentially to DMD pathogenesis is unknown. Similarly, the potential transcriptional diversity among nonmuscle cell types within dystrophic muscle has not been explored. Here, we describe the creation of a mouse model of DMD caused by deletion of exon 51 of the dystrophin gene, which represents a prevalent disease-causing mutation in humans. To understand the transcriptional abnormalities and heterogeneity associated with myofiber nuclei, as well as other mononucleated cell types that contribute to the muscle pathology associated with DMD, we performed single-nucleus transcriptomics of skeletal muscle of mice with dystrophin exon 51 deletion. Our results reveal distinctive and previously unrecognized myonuclear subtypes within dystrophic myofibers and uncover degenerative and regenerative transcriptional pathways underlying DMD pathogenesis. Our findings provide insights into the molecular underpinnings of DMD, controlled by the transcriptional activity of different types of muscle and nonmuscle nuclei.


2019 ◽  
Author(s):  
Sangkyun Cho ◽  
Manasvita Vashisth ◽  
Amal Abbas ◽  
Stephanie Majkut ◽  
Kenneth Vogel ◽  
...  

SummaryWhether cell forces or extracellular matrix (ECM) can impact genome integrity is largely unclear. Here, acute perturbations (~1hr) to actomyosin stress or ECM elasticity cause rapid and reversible changes in lamin-A, DNA damage, and cell cycle. Embryonic hearts, differentiated iPS-cells, and various nonmuscle cell types all show that actomyosin-driven nuclear rupture causes cytoplasmic mis-localization of DNA repair factors and excess DNA damage. Binucleation and micronuclei increase as telomeres shorten, which all favor cell cycle arrest. Deficiencies in lamin-A and repair factors exacerbate these effects, but lamin-A-associated defects are rescued by repair factor overexpression and by contractility modulators in clinical trials. Contractile cells on stiff ECM normally exhibit low phosphorylation and slow degradation of lamin-A by matrix-metalloprotease-2 (MMP2), and inhibition of this lamin-A turnover and also actomyosin contractility is seen to minimize DNA damage. Lamin-A is thus stress-stabilized to mechano-protect the genome.


2015 ◽  
Vol 112 (9) ◽  
pp. 2740-2745 ◽  
Author(s):  
Jocelyn Étienne ◽  
Jonathan Fouchard ◽  
Démosthène Mitrossilis ◽  
Nathalie Bufi ◽  
Pauline Durand-Smet ◽  
...  

Living cells adapt and respond actively to the mechanical properties of their environment. In addition to biochemical mechanotransduction, evidence exists for a myosin-dependent purely mechanical sensitivity to the stiffness of the surroundings at the scale of the whole cell. Using a minimal model of the dynamics of actomyosin cortex, we show that the interplay of myosin power strokes with the rapidly remodeling actin network results in a regulation of force and cell shape that adapts to the stiffness of the environment. Instantaneous changes of the environment stiffness are found to trigger an intrinsic mechanical response of the actomyosin cortex. Cortical retrograde flow resulting from actin polymerization at the edges is shown to be modulated by the stress resulting from myosin contractility, which in turn, regulates the cell length in a force-dependent manner. The model describes the maximum force that cells can exert and the maximum speed at which they can contract, which are measured experimentally. These limiting cases are found to be associated with energy dissipation phenomena, which are of the same nature as those taking place during the contraction of a whole muscle. This similarity explains the fact that single nonmuscle cell and whole-muscle contraction both follow a Hill-like force–velocity relationship.


2011 ◽  
Vol 22 (21) ◽  
pp. 3936-3939 ◽  
Author(s):  
James A. Spudich

A mere forty years ago it was unclear what motor molecules exist in cells that could be responsible for the variety of nonmuscle cell movements, including the “saltatory cytoplasmic particle movements” apparent by light microscopy. One wondered whether nonmuscle cells might have a myosin-like molecule, well known to investigators of muscle. Now we know that there are more than a hundred different molecular motors in eukaryotic cells that drive numerous biological processes and organize the cell's dynamic city plan. Furthermore, in vitro motility assays, taken to the single-molecule level using techniques of physics, have allowed detailed characterization of the processes by which motor molecules transduce the chemical energy of ATP hydrolysis into mechanical movement. Molecular motor research is now at an exciting threshold of being able to enter into the realm of clinical applications.


2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Hiroshi Qadota ◽  
Guy M. Benian

C. elegansis an excellent model for studying nonmuscle cell focal adhesions and the analogous muscle cell attachment structures. In the major striated muscle of this nematode, all of the M-lines and the Z-disk analogs (dense bodies) are attached to the muscle cell membrane and underlying extracellular matrix. Accumulating at these sites are many proteins associated with integrin. We have found that nematode M-lines contain a set of protein complexes that link integrin-associated proteins to myosin thick filaments. We have also obtained evidence for intriguing additional functions for these muscle cell attachment proteins.


2001 ◽  
Vol 153 (3) ◽  
pp. 569-584 ◽  
Author(s):  
Kazuo Katoh ◽  
Yumiko Kano ◽  
Mutsuki Amano ◽  
Hirofumi Onishi ◽  
Kozo Kaibuchi ◽  
...  

It is widely accepted that actin filaments and the conventional double-headed myosin interact to generate force for many types of nonmuscle cell motility, and that this interaction occurs when the myosin regulatory light chain (MLC) is phosphorylated by MLC kinase (MLCK) together with calmodulin and Ca2+. However, recent studies indicate that Rho-kinase is also involved in regulating the smooth muscle and nonmuscle cell contractility. We have recently isolated reactivatable stress fibers from cultured cells and established them as a model system for actomyosin-based contraction in nonmuscle cells. Here, using isolated stress fibers, we show that Rho-kinase mediates MLC phosphorylation and their contraction in the absence of Ca2+. More rapid and extensive stress fiber contraction was induced by MLCK than was by Rho-kinase. When the activity of Rho-kinase but not MLCK was inhibited, cells not only lost their stress fibers and focal adhesions but also appeared to lose cytoplasmic tension. Our study suggests that actomyosin-based nonmuscle contractility is regulated by two kinase systems: the Ca2+-dependent MLCK and the Rho-kinase systems. We propose that Ca2+ is used to generate rapid contraction, whereas Rho-kinase plays a major role in maintaining sustained contraction in cells.


1999 ◽  
Vol 10 (10) ◽  
pp. 3097-3112 ◽  
Author(s):  
David M. Helfman ◽  
Esther T. Levy ◽  
Christine Berthier ◽  
Michael Shtutman ◽  
Daniel Riveline ◽  
...  

Caldesmon is known to inhibit the ATPase activity of actomyosin in a Ca2+–calmodulin-regulated manner. Although a nonmuscle isoform of caldesmon is widely expressed, its functional role has not yet been elucidated. We studied the effects of nonmuscle caldesmon on cellular contractility, actin cytoskeletal organization, and the formation of focal adhesions in fibroblasts. Transient transfection of nonmuscle caldesmon prevents myosin II-dependent cell contractility and induces a decrease in the number and size of tyrosine-phosphorylated focal adhesions. Expression of caldesmon interferes with Rho A-V14-mediated formation of focal adhesions and stress fibers as well as with formation of focal adhesions induced by microtubule disruption. This inhibitory effect depends on the actin- and myosin-binding regions of caldesmon, because a truncated variant lacking both of these regions is inactive. The effects of caldesmon are blocked by the ionophore A23187, thapsigargin, and membrane depolarization, presumably because of the ability of Ca2+–calmodulin or Ca2+–S100 proteins to antagonize the inhibitory function of caldesmon on actomyosin contraction. These results indicate a role for nonmuscle caldesmon in the physiological regulation of actomyosin contractility and adhesion-dependent signaling and further demonstrate the involvement of contractility in focal adhesion formation.


Development ◽  
1999 ◽  
Vol 126 (10) ◽  
pp. 2045-2052 ◽  
Author(s):  
F.J. Naya ◽  
C. Wu ◽  
J.A. Richardson ◽  
P. Overbeek ◽  
E.N. Olson

The four members of the MEF2 family of MADS-box transcription factors, MEF2-A, MEF2-B, MEF2-C and MEF2-D, are expressed in overlapping patterns in developing muscle and neural cell lineages during embryogenesis. However, during late fetal development and postnatally, MEF2 transcripts are also expressed in a wide range of cell types. Because MEF2 expression is controlled by translational and post-translational mechanisms, it has been unclear whether the presence of MEF2 transcripts in the embryo reflects transcriptionally active MEF2 proteins. To define the temporospatial expression pattern of transcriptionally active MEF2 proteins during mouse embryogenesis, we generated transgenic mice harboring a lacZ reporter gene controlled by three tandem copies of the MEF2 site and flanking sequences from the desmin enhancer, which is active in cardiac, skeletal and smooth muscle cells. Expression of this MEF2-dependent transgene paralleled expression of MEF2 mRNAs in developing myogenic lineages and regions of the adult brain. However, it was not expressed in other cell types that express MEF2 transcripts. Tandem copies of the MEF2 site from the c-jun promoter directed expression in a similar pattern to the desmin MEF2 site, suggesting that transgene expression reflects the presence of transcriptionally active MEF2 proteins, rather than other factors specific for DNA sequences flanking the MEF2 site. These results demonstrate the presence of transcriptionally active MEF2 proteins in the early muscle and neural cell lineages during embryogenesis and argue against the existence of lineage-restricted MEF2 cofactors that discriminate between MEF2 sites with different immediate flanking sequences. The discordance between MEF2 mRNA expression and MEF2 transcriptional activity in nonmuscle cell types of embryos and adults also supports the notion that post-transcriptional mechanisms regulate the expression of MEF2 proteins.


Sign in / Sign up

Export Citation Format

Share Document