scholarly journals Oncofertility: Pharmacological Protection and Immature Testicular Tissue (ITT)-Based Strategies for Prepubertal and Adolescent Male Cancer Patients

2019 ◽  
Vol 20 (20) ◽  
pp. 5223 ◽  
Author(s):  
Elissavet Ntemou ◽  
Chrysanthi Alexandri ◽  
Pascale Lybaert ◽  
Ellen Goossens ◽  
Isabelle Demeestere

While the incidence of cancer in children and adolescents has significantly increased over the last decades, improvements made in the field of cancer therapy have led to an increased life expectancy for childhood cancer survivors. However, the gonadotoxic effect of the treatments may lead to infertility. Although semen cryopreservation represents the most efficient and safe fertility preservation method for males producing sperm, it is not feasible for prepubertal boys. The development of an effective strategy based on the pharmacological protection of the germ cells and testicular function during gonadotoxic exposure is a non-invasive preventive approach that prepubertal boys could benefit from. However, the progress in this field is slow. Currently, cryopreservation of immature testicular tissue (ITT) containing spermatogonial stem cells is offered to prepubertal boys as an experimental fertility preservation strategy by a number of medical centers. Several in vitro and in vivo fertility restoration approaches based on the use of ITT have been developed so far with autotransplantation of ITT appearing more promising. In this review, we discuss the pharmacological approaches for fertility protection in prepubertal and adolescent boys and the fertility restoration approaches developed on the utilization of ITT.

2016 ◽  
Vol 12 (01) ◽  
pp. 33
Author(s):  
Kutluk Oktay ◽  
Giuliano Bedoschi ◽  
◽  
◽  
◽  
...  

Fertility Preservation is an essential part of cancer care when treating young females and men. While semen cryopreservation is a straightforward approach for postpubertal men and there is the option of experimental testicular tissue freezing for prepubertal boys, the options for females are more tumultuous. The last 17 years brought us established approaches such the embryo and oocyte cryopreservation and the ovarian cryopreservation is ready to join the list. However, there still is no proven medical fertility preservation method and the controversy around the utility of GnRHa continues.


2021 ◽  
Author(s):  
Meghan Alice Robinson ◽  
Erin Bedford ◽  
Luke Witherspoon ◽  
Stephanie Willerth ◽  
Ryan Flannigan

Advances in cancer treatments have greatly improved pediatric cancer survival rates, leading to quality of life considerations and in particular fertility restoration. Accordingly, pre-pubertal patients have the option to cryopreserve testicular tissue for experimental restorative therapies, including in vitro spermatogenesis, wherein testicular tissue is engineered in vitro and spermatozoa are collected for in vitro fertilization (IVF). Current in vitro systems have been unable to reliably support the generation of spermatozoa from human testicular tissues, likely due to the inability for the dissociated testicular cells to recreate the native architecture of testicular tissue found in vivo. Recent advances in 3-D bioprinting can place cells into geometries at fine resolutions comparable to microarchitectures found in native tissues, and therefore hold promise as a tool for the development of a biomimetic in vitro system for human spermatogenesis. This study assessed the utility of bioprinting technology to recreate the precise architecture of testicular tissue and corresponding spermatogenesis for the first time. We printed testicular cell-laden hollow microtubules at similar resolutions to seminiferous tubules, and compared the results to testicular organoids. We show that the human testicular cells retain their viability and functionality post-printing, and illustrate an intrinsic ability to reorganize into their native cytoarchitecture. This study provides a proof of concept for the use of 3-D bioprinting technology as a tool to create biomimetic human testicular tissues.


2022 ◽  
Author(s):  
Buo-Jia Lu ◽  
Yung-Liang Liu ◽  
Bou-Zenn Lin ◽  
Chi-Huang Chen

Abstract Background: The optimal method for cryopreserving immature testicular tissue (ITT) remains unknown and there is no standardized protocol. Controlled slow freezing remains the mainstream method of choice in human prepubertal male fertility preservation. Currently, the outcomes for ITT vitrification are conflicting, and most data are limited to in vitro animal studies.Methods: A total of 12 pairs of donor and recipient mice were included in our experiments. The donors were immature transgenic mice, and the recipients were wild-type male mice. In the vitrification group, ITT was vitrified and thawed before transplantation. In the control group, ITT was transplanted to the recipients immediately. After thawing, we measured the expression of apoptosis-related mRNA caspase-3. More importantly, we monitored to adulthood all the transplanted grafts in vivo using noninvasive bioluminescence imaging (BLI) technology. On day 31, we removed the grafts for evaluation via hematoxylin and eosin staining and immunohistochemistry (IHC).Results: We traced the survival of the grafts by in vivo BLI on days 1, 2, 5, 7, and 31 after transplantation. In both the vitrification and the control groups, bioluminescence decreased between days 2 and 5. Subsequently, the bioluminescence showed an upward trend until day 31. Compared with day 1, the bioluminescence was significantly stronger on day 31 after transplantation (P = 0.009). The differences between the two groups were constantly insignificant after analysis. These results indicate that both fresh and frozen–thawed testicular tissues can survive for at least 31 days after transplantation. Moreover, the vitrification group showed BLI signals comparable with those of fresh tissues. Compared with the control group, expression of the caspase-3 gene was significantly increased after vitrification (P = 0.04). Histology and IHC showed that both tissue structure and protein expression were intact in both groups.Conclusions: Transplanted vitrified ITT grafts could survive till adulthood with BLI intensity comparable to that of the fresh control. Intact cells and structures for spermatogenesis in vitrified ITT grafts were as well-preserved as those in the control group. This translational model of self-repairing vitrified ITT grafts in vivo, lends weight to the role of vitrification in prepubertal male fertility preservation.


2020 ◽  
Vol 21 (15) ◽  
pp. 5471
Author(s):  
Mahmoud Huleihel ◽  
Eitan Lunenfeld

Male fertility preservation is required when treatment with an aggressive chemo-/-radiotherapy, which may lead to irreversible sterility. Due to new and efficient protocols of cancer treatments, surviving rates are more than 80%. Thus, these patients are looking forward to family life and fathering their own biological children after treatments. Whereas adult men can cryopreserve their sperm for future use in assistance reproductive technologies (ART), this is not an option in prepubertal boys who cannot produce sperm at this age. In this review, we summarize the different technologies for male fertility preservation with emphasize on prepubertal, which have already been examined and/or demonstrated in vivo and/or in vitro using animal models and, in some cases, using human tissues. We discuss the limitation of these technologies for use in human fertility preservation. This update review can assist physicians and patients who are scheduled for aggressive chemo-/radiotherapy, specifically prepubertal males and their parents who need to know about the risks of the treatment on their future fertility and the possible present option of fertility preservation.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
M Willems ◽  
P Sesenhausen ◽  
I Gies ◽  
V Vloeberghs ◽  
J D Schepper ◽  
...  

Abstract Study question Can intratesticular transplanted testis tissue from Klinefelter boys to the mouse testis be used to study the mechanisms behind testicular fibrosis? Summary answer Grafting of testicular tissue from Klinefelter boys to the mouse testis is not a valuable new in vivo model to study Klinefelter-related testicular fibrosis. What is known already Klinefelter syndrome (KS; 47, XXY) affects 1–2 in 1000 males. Most KS men suffer from azoospermia due to a loss of spermatogonial stem cells. Additionally, testicular fibrosis is detected from puberty onwards. However, mechanisms responsible for fibrosis and germ cell loss remain unknown. An optimal in vivo model to study the KS testicular fibrotic process is not available. This study aimed to evaluate a possible in vivo model to study KS-related testicular fibrosis. In addition, the effect of the mast cell blocker ketotifen, which showed positive effects on fertility in infertile non-KS patients, was evaluated in this graft model. Study design, size, duration First, the survival time of the KS graft was established, since it was the first time KS tissue was transplanted to the mouse testis. Testes were collected after two, four, six and eight weeks after which histological and immunohistochemical evaluations were performed. Next, the effect of daily ketotifen injections on the fibrotic appearance of intratesticular grafted testicular tissue from KS and controls was evaluated. Participants/materials, setting, methods Testicular biopsy samples from pre- and peripubertal KS (n = 22) and age-matched control samples (n = 22) were transplanted to the testes of six weeks old Swiss Nu/Nu mice (n = 22). Prior to grafting, testicular tissue pieces were cultured in vascular endothelial growth factor (VEGF) for five days. Next, tissues were transplanted to the mouse testes. Testicular transplants were analysed by immunohistochemistry. In the second experiment, mice were given daily subcutaneous injections of ketotifen or saline. Main results and the role of chance Four weeks after transplantation, all KS grafts could still be retrieved. At a later timepoint, degeneration of the tissue could be detected. In the grafts, recovered four weeks after transplantation, about 30% of the tubules in peripubertal grafts showed a good integrity, while in the prepubertal tissue, 83% of the tubules were intact. A fibrotic score was assigned to each graft. No significant changes in fibrotic score was observed between testicular biopsies before or after transplantation. However, an increased (p < 0.01) fibrotic score was observed after in-vitro treatment with VEGF both in control and KS tissue. Based on recovery and tubule integrity grafts were recovered after four weeks in the second experiment. Treatment with ketotifen did not result in significant histological differences compared to non-treated grafts (KS and control tissue). The survival potential of grafts from KS testicular biopsies of pre- and peripubertal boys was patient- and age-dependent. After four weeks, most KS tissue starts to degenerate. In prepubertal tissue, seminiferous tubules were mostly intact, while tissue from adolescent boys was impaired. Interestingly, no loss of germ cells was observed after transplantation of the testicular tissue. Limitations, reasons for caution The availability of tissue from young KS patients is very scarce, leading to a low number of included patients (n = 8). Testicular tissue pieces from the same patient were included to evaluate the differences before and after transplantation. However, histological variability between testicular tissue biopsy pieces is well-known in KS patients. Wider implications of the findings Since testicular tissue from KS boys, transplanted to the mouse testes, already starts to degenerate after four weeks and the integrity is not optimal, we conclude that this is not a valuable model for future studies. In vitro models to study the KS-testicular fibrosis should be investigated. Trial registration number NA


2019 ◽  
Vol 34 (9) ◽  
pp. 1621-1631 ◽  
Author(s):  
J Eliveld ◽  
E A van den Berg ◽  
J V Chikhovskaya ◽  
S K M van Daalen ◽  
C M de Winter-Korver ◽  
...  

Abstract STUDY QUESTION Is it possible to differentiate primary human testicular platelet-derived growth factor receptor alpha positive (PDGFRα+) cells into functional Leydig cells? SUMMARY ANSWER Although human testicular PDGFRα+ cells are multipotent and are capable of differentiating into steroidogenic cells with Leydig cell characteristics, they are not able to produce testosterone after differentiation. WHAT IS KNOWN ALREADY In rodents, stem Leydig cells (SLCs) that have been identified and isolated using the marker PDGFRα can give rise to adult testosterone-producing Leydig cells after appropriate differentiation in vitro. Although PDGFRα+ cells have also been identified in human testicular tissue, so far there is no evidence that these cells are true human SLCs that can differentiate into functional Leydig cells in vitro or in vivo. STUDY DESIGN, SIZE, DURATION We isolated testicular cells enriched for interstitial cells from frozen–thawed fragments of testicular tissue from four human donors. Depending on the obtained cell number, PDGFRα+-sorted cells of three to four donors were exposed to differentiation conditions in vitro to stimulate development into adipocytes, osteocytes, chondrocytes or into Leydig cells. We compared their cell characteristics with cells directly after sorting and cells in propagation conditions. To investigate their differentiation potential in vivo, PDGFRα+-sorted cells were transplanted in the testis of 12 luteinizing hormone receptor-knockout (LuRKO) mice of which 6 mice received immunosuppression treatment. An additional six mice did not receive cell transplantation and were used as a control. PARTICIPANTS/MATERIALS, SETTING, METHODS Human testicular interstitial cells were cultured to Passage 3 and FACS sorted for HLA-A,B,C+/CD34−/PDGFRα+. We examined their mesenchymal stromal cell (MSC) membrane protein expression by FACS analyses. Furthermore, we investigated lineage-specific staining and gene expression after MSC trilineage differentiation. For the differentiation into Leydig cells, PDGFRα+-sorted cells were cultured in either proliferation or differentiation medium for 28 days, after which they were stimulated either with or without hCG, forskolin or dbcAMP for 24 h to examine the increase in gene expression of steroidogenic enzymes using qPCR. In addition, testosterone, androstenedione and progesterone levels were measured in the culture medium. We also transplanted human PDGFRα+-sorted testicular interstitial cells into the testis of LuRKO mice. Serum was collected at several time points after transplantation, and testosterone was measured. Twenty weeks after transplantation testes were collected for histological examination. MAIN RESULTS AND THE ROLE OF CHANCE From primary cultured human testicular interstitial cells at Passage 3, we could obtain a population of HLA-A,B,C+/CD34−/PDGFRα+ cells by FACS. The sorted cells showed characteristics of MSC and were able to differentiate into adipocytes, chondrocytes and osteocytes. Upon directed differentiation into Leydig cells in vitro, we observed a significant increase in the expression of HSD3B2 and INSL3. After 24 h stimulation with forskolin or dbcAMP, a significantly increased expression of STAR and CYP11A1 was observed. The cells already expressed HSD17B3 and CYP17A1 before differentiation but the expression of these genes were not significantly increased after differentiation and stimulation. Testosterone levels could not be detected in the medium in any of the stimulation conditions, but after stimulation with forskolin or dbcAMP, androstenedione and progesterone were detected in culture medium. After transplantation of the human cells into the testes of LuRKO mice, no significant increase in serum testosterone levels was found compared to the controls. Also, no human cells were identified in the interstitium of mice testes 20 weeks after transplantation. LARGE SCALE DATA N/A LIMITATIONS, REASONS FOR CAUTION This study was performed using tissue from only four donors because of limitations in donor material. Because of the need of sufficient cell numbers, we first propagated cells to passage 3 before FACS of the desired cell population was performed. We cannot rule out this propagation of the cells resulted in loss of stem cell properties. WIDER IMPLICATIONS OF THE FINDINGS A lot of information on Leydig cell development is obtained from rodent studies, while the knowledge on human Leydig cell development is very limited. Our study shows that human testicular interstitial PDGFRα+ cells have different characteristics compared to rodent testicular PDGFRα+ cells in gene expression levels of steroidogenic enzymes and potential to differentiate in adult Leydig cells under comparable culture conditions. This emphasizes the need for confirming results from rodent studies in the human situation to be able to translate this knowledge to the human conditions, to eventually contribute to improvements of testosterone replacement therapies or establishing alternative cell therapies in the future, potentially based on SLCs. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by Amsterdam UMC, location AMC, Amsterdam, the Netherlands. All authors declare no competing interests.


2019 ◽  
Vol 31 (1) ◽  
pp. 145 ◽  
Author(s):  
S. Ledda ◽  
S. Pinna ◽  
S. Nieddu ◽  
D. Natan ◽  
A. Arav ◽  
...  

Vitrification is a method extensively used for preserving oocytes and embryos and is also gaining acceptance for preserving gonadal tissue. Cryopreservation of spermatogonial stem cells is an applicable method for young males seeking fertility preservation before starting a treatment or can be a tool for genetic preservation of rare or high-value animals. The aim of this work was to evaluate the cryopreservation of testicular tissue from young lambs by vitrification using a new device named E.Vit (FertileSafe, Ness Ziona, Israel) that permits all cryopreservation procedures to be performed in straw. The new device consists of a 0.3-mL straw (Cryo Bio System, IMV, L’Aigle, France) with a capsule containing 50-µm pores inserted at one end. Testicular tissue extracts were prepared from testes of slaughtered lambs (n=10, 40 days old), opened by sagittal sectioning with a microblade and collecting small pieces of testicular tissue (1mm3) from the middle part of the rete testis. Three pieces of gonadal tissue were inserted into each E.Vit device. Each straw was sequentially loaded vertically in two 1.5-mL microtubes, which contained the following solutions: first, the equilibrating solution (7.5% dimethyl sulfoxide+7.5% ethylene glycol+20% FCS in TCM-199) for 6min, followed by 90min in the vitrification solution (18% dimethyl sulfoxide+18% ethylene glycol+0.5M Trehalose+BSA in TCM-199). After exposure to the equilibrating solution and vitrification solution, the solutions were removed and the straws were directly loaded into LN2. The warming procedure consisted of placing the straws directly into 5-mL tubes containing 100, 50, and 25% warming solution (1M sucrose in TCM-199+20% FCS) at 38.6°C for 5min each before arrival into the holding medium. Samples were recovered from the straws incubated at 38.6°C in 5% CO2 in air in TCM 199+5% FCS and evaluated at 0 and 2h post-warming for viability using trypan blue staining. Expression of a panel of specific genes (SOD2, HSP90b, BAX, POUF5/OCT4, TERT, CIRBP, KIF11, AR, FSHR) was analysed by real-time PCR in cryopreserved tissue in vitro cultured for 2h post-warming (2hV), in fresh controls immediately after tissue dissection (0hF), and after 2h of in vitro culture (2hF). The majority of cells survived after vitrification, although viability immediately after warming (0hV: 56%±1.45) or after 2h of in vitro culture (IVC) (2hV: 54±7%) was significantly lower compared with non-cryopreserved fresh controls (0hF: 89%±1.45; ANOVA P<0.05). Expression analysis showed specific patterns for the different genes. Notably, BAX transcript abundance was not affected by vitrification or IVC, indicating an acceptable level of stress for the cells. The genes HSP90b and CIRBP were down-regulated in 2hF but increased in 2hV, as expected. Expression of SOD1 and OCT4 was altered by vitrification but not by IVC. Conversely, expression of TERT, KIF11, and AR was affected by both IVC and cryopreservation (ANOVA P<0.05). This novel protocol for testicular tissue cryopreservation of prepubertal animals may be a promising strategy for fertility preservation and can contribute as a new approach in the development of large-scale biodiversity programs.


Reproduction ◽  
2010 ◽  
Vol 139 (2) ◽  
pp. 331-335 ◽  
Author(s):  
Michiko Nakai ◽  
Hiroyuki Kaneko ◽  
Tamas Somfai ◽  
Naoki Maedomari ◽  
Manabu Ozawa ◽  
...  

Xenografting of testicular tissue into immunodeficient mice is known to be a valuable tool for facilitating the development of immature germ cells present in mammalian gonads. Spermatogenesis in xenografts and/or in vitro embryonic development to the blastocyst stage after ICSI of xenogeneic sperm has already been reported in large animals, including pigs; however, development of the embryos to term has not yet been confirmed. Therefore, in pigs, we evaluated the in vivo developmental ability of oocytes injected after ICSI of xenogeneic sperm. Testicular tissues prepared from neonatal piglets, which contain seminiferous cords consisting of only gonocytes/spermatogonia, were transplanted under the back skin of castrated nude mice. Between 133 and 280 days after xenografting, morphologically normal sperm were recovered, and a single spermatozoon was then injected into an in vitro matured porcine oocyte. After ICSI, the oocytes were electrostimulated and transferred into estrus-synchronized recipients. Two out of 23 recipient gilts gave birth to six piglets. Here, we describe for the first time that oocytes fertilized with a sperm from ectopic xenografts have the ability to develop to viable offspring in large mammals.


2011 ◽  
Vol 300 (5) ◽  
pp. E837-E847 ◽  
Author(s):  
Leonor Pinilla ◽  
Rafael Pineda ◽  
Francisco Gaytán ◽  
Magdalena Romero ◽  
David García-Galiano ◽  
...  

VGF (nonacronymic) is a 68-kDa protein encoded by the homonymous gene, which is expressed abundantly at the hypothalamus and has been involved in the control of metabolism and body weight homeostasis. Different active peptide fragments are generated from VGF, including TLQP-21. Circumstantial evidence has suggested that VGF might also participate in the control of reproduction. Yet its mechanisms of action and the eventual role of specific VGF-derived peptides on the hypothalamic-pituitary-gonadal (HPG) axis remain unknown. Herein we report a series of studies on the reproductive effects of TLQP-21 as evaluated in male rats by a combination of in vivo and in vitro analyses. Central administration of TLQP-21 induced acute gonadotropin responses in pubertal and adult male rats, likely via stimulation of GnRH secretion, as documented by static incubations of hypothalamic tissue. In addition, in pubertal (but not adult) males, TLQP-21 stimulated LH secretion directly at the pituitary level. Repeated central administration of TLQP-21 to pubertal males subjected to chronic undernutrition was able to ameliorate the hypogonadotropic state induced by food deprivation. In contrast, chronic administration of TLQP-21 to fed males at puberty resulted in partial desensitization and puberty delay. Finally, in adult (but not pubertal) males, TLQP-21 enhanced hCG-stimulated testosterone secretion by testicular tissue in vitro. In summary, our data are the first to document a complex and multifaceted mode of action of TLQP-21 at different levels of the male HPG axis with predominant stimulatory effects, thus providing a tenable basis for the (direct) reproductive role of this VGF-derived peptide.


Sign in / Sign up

Export Citation Format

Share Document