scholarly journals Genome-wide identification and characterization of the ALOG gene family in Petunia

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Feng Chen ◽  
Qin Zhou ◽  
Lan Wu ◽  
Fei Li ◽  
Baojun Liu ◽  
...  

Abstract Background The ALOG (Arabidopsis LSH1 and Oryza G1) family of proteins, namely DUF640 (domain of unknown function 640) domain proteins, were found in land plants. Functional characterization of a few ALOG members in model plants such as Arabidopsis and rice suggested they play important regulatory roles in plant development. The information about its evolution, however, is largely limited, and there was no any report on the ALOG genes in Petunia, an important ornamental species. Results The ALOG genes were identified in four species of Petunia including P. axillaris, P. inflata, P. integrifolia, and P. exserta based on the genome and/or transcriptome databases, which were further confirmed by cloning from P. hybrida ‘W115’ (Mitchel diploid), a popular laboratorial petunia line susceptible to genetic transformation. Phylogenetic analysis indicated that Petunia ALOG genes (named as LSHs according to their closest Arabidopsis homologs) were grouped into four clades, which can be further divided into eight groups, and similar exon-intron structure and motifs are reflected in the same group. The PhLSH genes of hybrid petunia ‘W115’ were mainly derived from P. axillaris. The qPCR analysis revealed distinct spatial expression patterns among them suggesting potentially functional diversification. Moreover, over-expressing PhLSH7a and PhLSH7b in Arabidopsis uncovered their functions in the development of both vegetative and reproductive organs. Conclusions Petunia genome includes 11 ALOG genes that can be divided into eight distinct groups, and they also show different expression patterns. Among these genes, PhLSH7b and PhLSH7a play significant roles in plant growth and development, especially in fruit development. Our results provide new insight into the evolution of ALOG gene family and have laid a good foundation for the study of petunia LSH gene in the future.

Author(s):  
Shefali Mishra ◽  
Pradeep Sharma ◽  
Rajender Singh ◽  
ratan Tiwari ◽  
Gyanendra Pratap Singh

The SnRK gene family is a key regulator playing an important role in plant stress response by phosphorylating the target protein to regulate the signalling pathways. The function of SnRK gene family has been reported in many species but is limited to Triticum asetivum. In this study, SnRK gene family in the wheat genome was identified and its structural characteristics were described. One hundred forty-seven SnRK genes distributed across 21 chromosomes were identified in the Triticum aestivum genome and categorised into three subgroups (SnRK1/2/3) based on phylogenetic analyses and domain types. The gene intron-exon structure and protein-motif composition of SnRKs were similar within each subgroup but different amongst the groups. Gene duplication between the wheat, Arabidopsis, rice and barley genomes was also investigated in order to get insight into the evolutionary aspects of the TaSnRK family genes. SnRK genes showed differential expression patterns in leaves, roots, spike, and grains. Redundant stress-related cis-elements were also found in the promoters of 129 SnRK genes and their expression levels varied widely following drought, ABA and light regulated elements. In particular, TaSnRK2.11 had higher and increased expression under the abiotic stresses and can be a candidate gene for the abiotc stress tolerance. The findings will aid in the functional characterization of TaSnRK genes for further research.


2020 ◽  
Author(s):  
Weizhuo Zhu ◽  
Dezhi Wu ◽  
Lixi Jiang ◽  
Lingzhen Ye

Abstract Background: Sucrose non-fermenting 1 related protein kinases (SnRK) play crucial roles in responding to biotic and abiotic stresses through activating protein phosphorylation pathways. However, little information of SnRK genes was available in Brassica napus, one of important oil crops. Recently, the released sequences of the reference genome of B.napus provide a good chance to perform genome-wide identification and characterization of BnSnRK gene family in the rapeseed.Results: Totally 114 SnRK genes distributed on 19 chromosomes were identified in the genome of B.napus and classified into three subfamilies on the basis of phylogenetic analysis and the domain types. According to gene structure and motif composition analysis, the BnSnRK sequences showed obvious divergence among three subfamilies. Gene duplication and synteny between the genomes of the rapeseed and Arabidopsis were also analyzed to provide insights into the evolutionary characteristics of BnSnRK family genes. Cis-element analysis revealed that BnSnRKs may response to diverse environmental stresses. Moreover, the expression patterns of BnSnRKs in various tissues and under diverse abiotic stresses were distinct difference. Besides, Single Nucleotide Polymorphisms (SNP) distribution analysis suggests the function disparity of BnSnRK family genes in different genotypes of the rapeseed.Conclusion: We examined genomic structures, evolution features, expression patterns and SNP distribution of 114 BnSnRKs. The results provide valuable information for functional characterization of BnSnRK genes in future studies.


2020 ◽  
Author(s):  
Weizhuo Zhu ◽  
Dezhi Wu ◽  
Lixi Jiang ◽  
Lingzhen Ye

Abstract Background: Sucrose non-fermenting 1 related protein kinases (SnRK) play crucial roles in responding to biotic and abiotic stresses through activating protein phosphorylation pathways. However, little information of SnRK genes was available in Brassica napus, one of important oil crops. Recently, the released sequences of the reference genome of B.napus provide a good chance to perform genome-wide identification and characterization of BnSnRK gene family in the rapeseed.Results: Totally 114 SnRK genes distributed on 19 chromosomes were identified in the genome of B.napus and classified into three subfamilies on the basis of phylogenetic analysis and the domain types. According to gene structure and motif composition analysis, the BnSnRK sequences showed obvious divergence among three subfamilies. Gene duplication and synteny between the genomes of the rapeseed and Arabidopsis were also analyzed to provide insights into the evolutionary characteristics of BnSnRK family genes. Cis-element analysis revealed that BnSnRKs may response to diverse environmental stresses. Moreover, the expression patterns of BnSnRKs in various tissues and under diverse abiotic stresses were distinct difference. Besides, Single Nucleotide Polymorphisms (SNP) distribution analysis suggests the function disparity of BnSnRK family genes in different genotypes of the rapeseed.Conclusion: We examined genomic structures, evolution features, expression patterns and SNP distribution of 114 BnSnRKs. The results provide valuable information for functional characterization of BnSnRK genes in future studies.


2019 ◽  
Vol 20 (22) ◽  
pp. 5749 ◽  
Author(s):  
Zhao ◽  
Liu ◽  
Zhang ◽  
Hu ◽  
Liu ◽  
...  

Fructose-1,6-bisphosphate aldolase (FBA) is a versatile metabolic enzyme involved in multiple important processes of glycolysis, gluconeogenesis, and Calvin cycle. Despite its significance in plant biology, the identity of this gene family in oil crops is lacking. Here, we performed genome-wide identification and characterization of FBAs in an allotetraploid species, oilseed rape Brassica napus. Twenty-two BnaFBA genes were identified and divided into two groups based on integrative analyses of functional domains, phylogenetic relationships, and gene structures. Twelve and ten B. napus FBAs (BnaFBAs) were predicted to be localized in the chloroplast and cytoplasm, respectively. Notably, synteny analysis revealed that Brassica-specific triplication contributed to the expansion of the BnaFBA gene family during the evolution of B. napus. Various cis-acting regulatory elements pertinent to abiotic and biotic stresses, as well as phytohormone responses, were detected. Intriguingly, each of the BnaFBA genes exhibited distinct sequence polymorphisms. Among them, six contained signatures of selection, likely having experienced breeding selection during adaptation and domestication. Importantly, BnaFBAs showed diverse expression patterns at different developmental stages and were preferentially highly expressed in photosynthetic tissues. Our data thus provided the foundation for further elucidating the functional roles of individual BnaFBA and also potential targets for engineering to improve photosynthetic productivity in B. napus.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yushan Liu ◽  
Yizhou Wang ◽  
Jiabo Pei ◽  
Yadong Li ◽  
Haiyue Sun

Abstract Background Caffeic acid O-methyltransferases (COMTs) play an important role in the diversification of natural products, especially in the phenylalanine metabolic pathway of plant. The content of COMT genes in blueberry and relationship between their expression patterns and the lignin content during fruit development have not clearly investigated by now. Results Ninety-two VcCOMTs were identified in Vaccinium corymbosum. According to phylogenetic analyses, the 92 VcCOMTs were divided into 2 groups. The gene structure and conserved motifs within groups were similar which supported the reliability of the phylogenetic structure groupings. Dispersed duplication (DSD) and whole-genome duplication (WGD) were determined to be the major forces in VcCOMTs evolution. The results showed that the results of qRT-PCR and lignin content for 22 VcCOMTs, VcCOMT40 and VcCOMT92 were related to lignin content at different stages of fruit development of blueberry. Conclusion We identified COMT gene family in blueberry, and performed comparative analyses of the phylogenetic relationships in the 15 species of land plant, and gene duplication patterns of COMT genes in 5 of the 15 species. We found 2 VcCOMTs were highly expressed and their relative contents were similar to the variation trend of lignin content during the development of blueberry fruit. These results provide a clue for further study on the roles of VcCOMTs in the development of blueberry fruit and could promisingly be foundations for breeding blueberry clutivals with higher fruit firmness and longer shelf life.


2016 ◽  
Vol 38 (8) ◽  
pp. 733-745 ◽  
Author(s):  
Tao Wang ◽  
Jin-Jun Yue ◽  
Xue-Ji Wang ◽  
Lu Xu ◽  
Lu-Bin Li ◽  
...  

2020 ◽  
Author(s):  
Yanan Song ◽  
Hongli Cui ◽  
Ying Shi ◽  
Jinai Xue ◽  
Chunli Ji ◽  
...  

Abstract Background: WRKY transcription factors are a superfamily of regulators involved in diverse biological processes and stress responses in plants. However, knowledge is limited for WRKY family in camelina (Camelina sativa), an important Brassicaceae oil crop with strong tolerance against various stresses. Here, genome-wide characterization of WRKY proteins is performed to examine their gene-structures, phylogenetics, expressions, conserved motif organizations, and functional annotation to identify candidate WRKYs mediating regulation of stress resistance in camelina.Results: Total of 242 CsWRKY proteins encoded by 224 gene loci distributed uneven on chromosomes were identified, and classified into three groups via phylogenetic analysis according to their WRKY domains and zinc finger motifs. 15 CsWRKY gene loci generated 33 spliced variants. Orthologous WRKY gene pairs were identified, with 173 pairs in C. sativa and Arabidopsis genomes as well as 282 pairs for C. sativa and B. napus, respectively. 137 segmental duplication events were observed but no tandem duplication in camelina genome. Ten major conserved motifs were examined, with WRKYGQK as the most conserved and several variants existed in many CsWRKYs. Expression analysis revealed that half more CsWRKY genes were expressed constitutively, and a set of them had a tissue-specific expression. Notably, 11 CsWRKY genes exhibited significantly expression changes in plant seedlings under cold, salt, and drought stress, respectively, having preferentially inducible expression pattern in response to the stress.Conclusions: The present described a detail analysis of CsWRKY gen family and their expression profiled in twelve tissues and under several stress conditions. Segmental duplication is the major force for large expansion of this gene family, and a strong purifying pressure happened for CsWRKY proteins evolutionally. CsWRKY proteins play important roles for plant development, with differential functions in different tissues. Exceptionally, eleven CsWRKYs, particularly five alternative spliced isoforms were found to be the key players possibly in mediating plant response to various stresses. Overall, our results provide a foundation for understanding roles of CsWRKYs and the precise mechanism through which CsWRKYs regulate high stress resistance to stress as well as development of stress tolerance cultivars for Cruciferae crops.


Sign in / Sign up

Export Citation Format

Share Document