scholarly journals Role of Sulfonylurea Receptor 1 and Glibenclamide in Traumatic Brain Injury: A Review of the Evidence

2020 ◽  
Vol 21 (2) ◽  
pp. 409 ◽  
Author(s):  
Ruchira M. Jha ◽  
Josh Bell ◽  
Giuseppe Citerio ◽  
J. Claude Hemphill ◽  
W. Taylor Kimberly ◽  
...  

Cerebral edema and contusion expansion are major determinants of morbidity and mortality after TBI. Current treatment options are reactive, suboptimal and associated with significant side effects. First discovered in models of focal cerebral ischemia, there is increasing evidence that the sulfonylurea receptor 1 (SUR1)—Transient receptor potential melastatin 4 (TRPM4) channel plays a key role in these critical secondary injury processes after TBI. Targeted SUR1-TRPM4 channel inhibition with glibenclamide has been shown to reduce edema and progression of hemorrhage, particularly in preclinical models of contusional TBI. Results from small clinical trials evaluating glibenclamide in TBI have been encouraging. A Phase-2 study evaluating the safety and efficacy of intravenous glibenclamide (BIIB093) in brain contusion is actively enrolling subjects. In this comprehensive narrative review, we summarize the molecular basis of SUR1-TRPM4 related pathology and discuss TBI-specific expression patterns, biomarker potential, genetic variation, preclinical experiments, and clinical studies evaluating the utility of treatment with glibenclamide in this disease.

2012 ◽  
Vol 288 (5) ◽  
pp. 3655-3667 ◽  
Author(s):  
Seung Kyoon Woo ◽  
Min Seong Kwon ◽  
Alexander Ivanov ◽  
Volodymyr Gerzanich ◽  
J. Marc Simard

2021 ◽  
Vol 22 (21) ◽  
pp. 11899
Author(s):  
Ruchira M. Jha ◽  
Anupama Rani ◽  
Shashvat M. Desai ◽  
Sudhanshu Raikwar ◽  
Sandra Mihaljevic ◽  
...  

Sulfonylurea receptor 1 (SUR1) is a member of the adenosine triphosphate (ATP)-binding cassette (ABC) protein superfamily, encoded by Abcc8, and is recognized as a key mediator of central nervous system (CNS) cellular swelling via the transient receptor potential melastatin 4 (TRPM4) channel. Discovered approximately 20 years ago, this channel is normally absent in the CNS but is transcriptionally upregulated after CNS injury. A comprehensive review on the pathophysiology and role of SUR1 in the CNS was published in 2012. Since then, the breadth and depth of understanding of the involvement of this channel in secondary injury has undergone exponential growth: SUR1-TRPM4 inhibition has been shown to decrease cerebral edema and hemorrhage progression in multiple preclinical models as well as in early clinical studies across a range of CNS diseases including ischemic stroke, traumatic brain injury, cardiac arrest, subarachnoid hemorrhage, spinal cord injury, intracerebral hemorrhage, multiple sclerosis, encephalitis, neuromalignancies, pain, liver failure, status epilepticus, retinopathies and HIV-associated neurocognitive disorder. Given these substantial developments, combined with the timeliness of ongoing clinical trials of SUR1 inhibition, now, another decade later, we review advances pertaining to SUR1-TRPM4 pathobiology in this spectrum of CNS disease—providing an overview of the journey from patch-clamp experiments to phase III trials.


Endocrinology ◽  
2015 ◽  
Vol 156 (5) ◽  
pp. 1838-1850 ◽  
Author(s):  
Jee Y. Lee ◽  
Hae Y. Choi ◽  
Won H. Na ◽  
Bong G. Ju ◽  
Tae Y. Yune

Blood-spinal cord barrier (BSCB) disruption and progressive hemorrhage after spinal cord injury (SCI) lead to secondary injury and the subsequent apoptosis and/or necrosis of neuron and glia, causing permanent neurological deficits. In this study, we examined the effect of 17β-estradiol (E2) on BSCB breakdown and hemorrhage as well as subsequent inflammation after SCI. After a moderate contusion injury at the 9th thoracic segment of spinal cord, E2 (300 μg/kg) was administered by iv injection immediately after SCI, and the same dose of E2 was then administered 6 and 24 hours after injury. Our data show that E2 attenuated BSCB permeability and hemorrhage and reduced the infiltration of neutrophils and macorphages after SCI. Consistent with this finding, the expression of inflammatory mediators was significantly reduced by E2. Furthermore, E2 treatment significantly inhibited the expression of sulfonylurea receptor 1 and transient receptor potential melastatin 4 after injury, which are known to mediate hemorrhage at an early stage after SCI. Moreover, the expression and activation of matrix metalloprotease-9 after injury, which is known to disrupt BSCB, and the degradation of tight junction proteins, such as zona occludens-1 and occludin, were significantly inhibited by E2 treatment. Furthermore, the protective effects of E2 on BSCB disruption and functional improvement were abolished by an estrogen receptor antagonist, ICI 182780 (3 mg/kg). Thus, our study provides evidence that the neuroprotective effect of E2 after SCI is, in part, mediated by inhibiting BSCB disruption and hemorrhage through the down-regulation of sulfonylurea receptor 1/transient receptor potential melastatin 4 and matrix metalloprotease-9, which is dependent on estrogen receptor.


2020 ◽  
pp. 0271678X2095929
Author(s):  
Mohammad Al-Mahdi Al-Karagholi ◽  
Hashmat Ghanizada ◽  
Cherie Amalie Waldorff Nielsen ◽  
Assan Ansari ◽  
Christian Gram ◽  
...  

Glibenclamide inhibits sulfonylurea receptor (SUR), which regulates several ion channels including SUR1-transient receptor potential melastatin 4 (SUR1-TRPM4) channel and ATP-sensitive potassium (KATP) channel. Stroke upregulates SURl-TRPM4 channel, which causes a rapid edema formation and brain swelling. Glibenclamide may antagonize the formation of cerebral edema during stroke. Preclinical studies showed that glibenclamide inhibits KATP channel-induced vasodilation without altering the basal vascular tone. The in vivo human cerebrovascular effects of glibenclamide have not previously been investigated. In a randomized, double-blind, placebo-controlled, three-way cross-over study, we used advanced 3 T MRI methods to investigate the effects of glibenclamide and KATP channel opener levcromakalim on mean global cerebral blood flow (CBF) and intra- and extracranial artery circumferences in 15 healthy volunteers. Glibenclamide administration did not alter the mean global CBF and the basal vascular tone. Following levcromakalim infusion, we observed a 14% increase of the mean global CBF and an 8% increase of middle cerebral artery (MCA) circumference, and glibenclamide did not attenuate levcromakalim-induced vascular changes. Collectively, the findings demonstrate the vital role of KATP channels in cerebrovascular hemodynamic and indicate that glibenclamide does not inhibit the protective effects of KATP channel activation during hypoxia and ischemia-induced brain injury.


2018 ◽  
Vol 10 (1) ◽  
pp. 91-103 ◽  
Author(s):  
Bo Chen ◽  
Gandi Ng ◽  
Yahui Gao ◽  
See Wee Low ◽  
Edwin Sandanaraj ◽  
...  

Abstract The transient receptor potential melastatin 4 (TRPM4) channel has been suggested to play a key role in the treatment of ischemic stroke. However, in vivo evaluation of TRPM4 channel, in particular by direct channel suppression, is lacking. In this study, we used multimodal imaging to assess edema formation and quantify the amount of metabolically functional brain salvaged after a rat model of stroke reperfusion. TRPM4 upregulation in endothelium emerges as early as 2 h post-stroke induction. Expression of TRPM4 channel was suppressed directly in vivo by treatment with siRNA; scrambled siRNA was used as a control. T2-weighted MRI suggests that TRPM4 inhibition successfully reduces edema by 30% and concomitantly salvages functionally active brain, measured by 18F-FDG-PET. These in vivo imaging results correlate well with post-mortem 2,3,5-triphenyltetrazolium chloride (TTC) staining which exhibits a 34.9% reduction in infarct volume after siRNA treatment. Furthermore, in a permanent stroke model, large areas of brain tissue displayed both edema and significant reductions in metabolic activity which was not shown in transient models with or without TRPM4 inhibition, indicating that tissue salvaged by TRPM4 inhibition during stroke reperfusion may survive. Evans Blue extravasation and hemoglobin quantification in the ipsilateral hemisphere were greatly reduced, suggesting that TRPM4 inhibition can improve BBB integrity after ischemic stroke reperfusion. Our results support the use of TRPM4 blocker for early stroke reperfusion.


2019 ◽  
Vol 36 (7) ◽  
pp. 1060-1079 ◽  
Author(s):  
Volodymyr Gerzanich ◽  
Jesse A. Stokum ◽  
Svetlana Ivanova ◽  
Seung Kyoon Woo ◽  
Orest Tsymbalyuk ◽  
...  

2016 ◽  
Vol 310 (7) ◽  
pp. C600-C611 ◽  
Author(s):  
Kiril L. Hristov ◽  
Amy C. Smith ◽  
Shankar P. Parajuli ◽  
John Malysz ◽  
Eric S. Rovner ◽  
...  

Transient receptor potential melastatin 4 (TRPM4) channels are Ca2+-activated nonselective cation channels that have been recently identified as regulators of detrusor smooth muscle (DSM) function in rodents. However, their expression and function in human DSM remain unexplored. We provide insights into the functional role of TRPM4 channels in human DSM under physiological conditions. We used a multidisciplinary experimental approach, including RT-PCR, Western blotting, immunohistochemistry and immunocytochemistry, patch-clamp electrophysiology, and functional studies of DSM contractility. DSM samples were obtained from patients without preoperative overactive bladder symptoms. RT-PCR detected mRNA transcripts for TRPM4 channels in human DSM whole tissue and freshly isolated single cells. Western blotting and immunohistochemistry with confocal microscopy revealed TRPM4 protein expression in human DSM. Immunocytochemistry further detected TRPM4 protein expression in DSM single cells. Patch-clamp experiments showed that 9-phenanthrol, a selective TRPM4 channel inhibitor, significantly decreased the transient inward cation currents and voltage step-induced whole cell currents in freshly isolated human DSM cells. In current-clamp mode, 9-phenanthrol hyperpolarized the human DSM cell membrane potential. Furthermore, 9-phenanthrol attenuated the spontaneous phasic, carbachol-induced and nerve-evoked contractions in human DSM isolated strips. Significant species-related differences in TRPM4 channel activity between human, rat, and guinea pig DSM were revealed, suggesting a more prominent physiological role for the TRPM4 channel in the regulation of DSM function in humans than in rodents. In conclusion, TRPM4 channels regulate human DSM excitability and contractility and are critical determinants of human urinary bladder function. Thus, TRPM4 channels could represent promising novel targets for the pharmacological or genetic control of overactive bladder.


2016 ◽  
Vol 311 (6) ◽  
pp. H1416-H1430 ◽  
Author(s):  
Donal Melanaphy ◽  
Christopher D. Johnson ◽  
Maxim V. Kustov ◽  
Conall A. Watson ◽  
Lyudmyla Borysova ◽  
...  

Transient receptor potential melastatin 8 (TRPM8) is the principal cold and menthol receptor channel. Characterized primarily for its cold-sensing role in sensory neurons, it is expressed and functional in several nonneuronal tissues, including vasculature. We previously demonstrated that menthol causes variable mechanical responses (vasoconstriction, vasodilatation, or biphasic reactions) in isolated arteries, depending on vascular tone. Here we aimed to dissect the specific ion channel mechanisms and corresponding Ca2+ signaling pathways underlying such complex responses to menthol and other TRPM8 ligands in rat tail artery myocytes using patch-clamp electrophysiology, confocal Ca2+ imaging, and ratiometric Ca2+ recording. Menthol (300 μM, a concentration typically used to induce TRPM8 currents) strongly inhibited L-type Ca2+ channel current (L- ICa) in isolated myocytes, especially its sustained component, most relevant for depolarization-induced vasoconstriction. In contraction studies, with nifedipine present (10 μM) to abolish L- ICa contribution to phenylephrine (PE)-induced vasoconstrictions of vascular rings, a marked increase in tone was observed with menthol, similar to resting (i.e., without α-adrenoceptor stimulation by PE) conditions, when L-type channels were mostly deactivated. Menthol-induced increases in PE-induced vasoconstrictions could be inhibited both by the TRPM8 antagonist AMTB (thus confirming the specific role of TRPM8) and by cyclopiazonic acid treatment to deplete Ca2+ stores, pointing to a major contribution of Ca2+ release from the sarcoplasmic reticulum in these contractile responses. Immunocytochemical analysis has indeed revealed colocalization of TRPM8 and InsP3 receptors. Moreover, menthol Ca2+ responses, which were somewhat reduced under Ca2+-free conditions, were strongly reduced by cyclopiazonic acid treatment to deplete Ca2+ store, whereas caffeine-induced Ca2+ responses were blunted in the presence of menthol. Finally, two other common TRPM8 agonists, WS-12 and icilin, also inhibited L- ICa. With respect to L- ICa inhibition, WS-12 is the most selective agonist. It augmented PE-induced contractions, whereas any secondary phase of vasorelaxation (as with menthol) was completely lacking. Thus TRPM8 channels are functionally active in rat tail artery myocytes and play a distinct direct stimulatory role in control of vascular tone. However, indirect effects of TRPM8 agonists, which are unrelated to TRPM8, are mediated by inhibition of L-type Ca2+ channels and largely obscure TRPM8-mediated vasoconstriction. These findings will promote our understanding of the vascular TRPM8 role, especially the well-known hypotensive effect of menthol, and may also have certain translational implications (e.g., in cardiovascular surgery, organ storage, transplantation, and Raynaud's phenomenon).


2021 ◽  
Vol 15 (1) ◽  
pp. 40
Author(s):  
Csaba Dienes ◽  
Zsigmond Máté Kovács ◽  
Tamás Hézső ◽  
János Almássy ◽  
János Magyar ◽  
...  

Transient receptor potential melastatin 4 (TRPM4) is a unique member of the TRPM protein family and, similarly to TRPM5, is Ca2+ sensitive and permeable for monovalent but not divalent cations. It is widely expressed in many organs and is involved in several functions; it regulates membrane potential and Ca2+ homeostasis in both excitable and non-excitable cells. This part of the review discusses the currently available knowledge about the physiological and pathophysiological roles of TRPM4 in various tissues. These include the physiological functions of TRPM4 in the cells of the Langerhans islets of the pancreas, in various immune functions, in the regulation of vascular tone, in respiratory and other neuronal activities, in chemosensation, and in renal and cardiac physiology. TRPM4 contributes to pathological conditions such as overactive bladder, endothelial dysfunction, various types of malignant diseases and central nervous system conditions including stroke and injuries as well as in cardiac conditions such as arrhythmias, hypertrophy, and ischemia-reperfusion injuries. TRPM4 claims more and more attention and is likely to be the topic of research in the future.


Sign in / Sign up

Export Citation Format

Share Document