scholarly journals Foliar Application of Chitosan Increases Tomato Growth and Influences Mycorrhization and Expression of Endochitinase-Encoding Genes

2020 ◽  
Vol 21 (2) ◽  
pp. 535 ◽  
Author(s):  
Fatima El Amerany ◽  
Abdelilah Meddich ◽  
Said Wahbi ◽  
Andrea Porzel ◽  
Moha Taourirte ◽  
...  

Nowadays, applying bio-organic fertilizer (e.g., chitosan, Ch) or integrating beneficial microorganisms (e.g., arbuscular mycorrhizal fungi, AMF) are among the successful strategies to promote plant growth. Here, the effect of two application modes of Ch (foliar spray or root treatment) and Ch-derived nanoparticles (NPs) on tomato plants colonized with the AMF Rhizophagus irregularis were analyzed, thereby focusing on plant biomass, flowering and mycorrhization. An increase of shoot biomass and flower number was observed in arbuscular mycorrhizal (AM) plants sprayed with Ch. The interaction with AMF, however, was reduced as shown by decreased mycorrhization rates and AM-specific gene expression. To get insights into Ch effect on mycorrhization, levels of sugars, jasmonates, abscisic acid, and the expression of two chitinase-encoding genes were determined in mycorrhizal roots. Ch had no effect on sugar and phytohormone levels, but the reduced mycorrhization was correlated with down- and upregulated expression of Chi3 and Chi9, respectively. In contrast, application of NPs to leaves and Ch applied to the soil did not show any effect, neither on mycorrhization rate nor on growth of mycorrhizal plants. Concluding, Ch application to leaves enhanced plant growth and flowering and reduced interaction with AMF, whereas root treatment did not affect these parameters.

Botany ◽  
2015 ◽  
Vol 93 (7) ◽  
pp. 405-412 ◽  
Author(s):  
Damien Derelle ◽  
Pierre-Emmanuel Courty ◽  
Isabelle Dajoz ◽  
Stéphane Declerck ◽  
Ingrid M. van Aarle ◽  
...  

Reciprocal effects between arbuscular mycorrhizal fungi (AMF) and plant communities are essential to study the complexity of interactions in a grassland ecosystem. Here, we investigated the effects of plant community density and composition on AMF colonization, plant growth, and reproduction investment. We developed an experimental system with three compartments, each containing either three or six Medicago truncatula Gaertn. plants, or three M. truncatula plants associated with three Silene vulgaris (Moench) Garcke plants. All three compartments shared the same common mycorrhizal network built either by Rhizophagus irregularis MUCL 43194, by Rhizophagus clarus MUCL 46238, or by both AMF in association grown in a central compartment on Plantago lanceolata L. Our results demonstrate an absence of effect of plant density but a positive influence of mixed cultures on AMF root colonization compared with monocultures. This higher AMF development resulted in a positive feedback on shoot biomass and number of flowers and fruits produced by M. truncatula. Although both fungal strains were present in root systems, co-inoculation did not generate a synergistic effect on plant development. These results highlight the importance of plant associations on AMF dynamics, which requires further investigation at the community scale to improve our understanding of the intricate AMF – host plant relationships.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1531
Author(s):  
Narcisa Urgiles-Gómez ◽  
María Eugenia Avila-Salem ◽  
Paúl Loján ◽  
Max Encalada ◽  
Leslye Hurtado ◽  
...  

Coffee is an important, high-value crop because its roasted beans are used to produce popular beverages that are consumed worldwide. Coffee plantations exist in over 70 countries and constitute the main economic activity of approximately 125 million people. Currently, there is global concern regarding the excessive use of agrochemicals and pesticides in agriculture, including coffee crops. This situation has motivated researchers, administrators, and farmers to seek ecologically friendly alternatives to decrease the use of synthetic fertilizers and pesticides. In the last decades, multiple studies of the rhizosphere, at the chemical, physical and biological levels, have improved our understanding of the importance of beneficial microorganisms to plant health and growth. This review aims to summarize the state of the use of plant growth-promoting microorganisms (PGPM) in coffee production, where the most extensively studied microorganisms are beneficial plant growth-promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF). This review also contains information on PGPM, in regard to plantations at different latitudes, isolation techniques, mass multiplication, formulation methods, and the application of PGPM in nurseries, monoculture, and coffee agroforestry systems. Finally, this review focuses on relevant research performed during the last decade that can help us improve sustainable coffee production.


Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 370
Author(s):  
Murugesan Chandrasekaran

Arbuscular mycorrhizal fungi (AMF) are obligate symbionts of higher plants which increase the growth and nutrient uptake of host plants. The primary objective was initiated based on analyzing the enormity of optimal effects upon AMF inoculation in a comparative bias between mycorrhizal and non-mycorrhizal plants stipulated on plant biomass and nutrient uptake. Consequently, in accomplishing the above-mentioned objective a vast literature was collected, analyzed, and evaluated to establish a weighted meta-analysis irrespective of AMF species, plant species, family and functional group, and experimental conditions in the context of beneficial effects of AMF. I found a significant increase in the shoot, root, and total biomass by 36.3%, 28.5%, and, 29.7%, respectively. Moreover, mycorrhizal plants significantly increased phosphorus, nitrogen, and potassium uptake by 36.3%, 22.1%, and 18.5%, respectively. Affirmatively upon cross-verification studies, plant growth parameters intensification was accredited to AMF (Rhizophagus fasciculatus followed by Funniliforme mosseae), plants (Triticum aestivum followed by Solanum lycopersicum), and plant functional groups (dicot, herbs, and perennial) were the additional vital important significant predictor variables of plant growth responses. Therefore, the meta-analysis concluded that the emancipated prominent root characteristics, increased morphological traits that eventually help the host plants for efficient phosphorus uptake, thereby enhancing plant biomass. The present analysis can be rationalized for any plant stress and assessment of any microbial agent that contributes to plant growth promotion.


1999 ◽  
Vol 34 (6) ◽  
pp. 1018-1024 ◽  
Author(s):  
Elizabeth Ying Chu

With the objective of verifying the response of Euterpe oleracea seedlings to seven arbuscular mycorrhizal fungi species, an experimental trial was carried out under greenhouse conditions. Seeds of E. oleracea were sown in carbonized rice husk. Germinating seeds were initially transferred to plastic cups, containing fumigated Reddish Yellow Quartz Sand and inoculated with arbuscular mycorrhizal fungi. Two months later, seedlings were transferred to 2 kg black plastic bags, containing the same soil without fumigation. Plant growth and mineral nutrients were evaluated nine months after mycorrhizal inoculation. Differential effects were observed among the species tested, with Scutellispora gilmorei being the most effective ones in promoting growth and nutrient content of E. oleracea seedlings. The increment resulted from inoculation with S. gilmorei were 92% in total plant height, 116% in stem diameter, 361% in dry matter production, 191% in N, 664% in P, 46% in K, 562% in Ca, 363% in Mg and 350% in Zn contents, comparing to uninoculated controls. Infected root length was positively correlated to nutrient content and plant growth. It was concluded that growth and nutrient uptake of E. oleracea seedlings could be significantly improved by inoculation of effective arbuscular mycorrhizal fungi.


2012 ◽  
Vol 14 (4) ◽  
pp. 692-699 ◽  
Author(s):  
M.C. Arango ◽  
M.F. Ruscitti ◽  
M.G. Ronco ◽  
J. Beltrano

This study evaluated the effects of inoculation with the arbuscular mycorrhizal fungi Glomus mosseae, Glomus intraradices A4 and Glomus intraradices B1 and two phosphorus levels (10 and 40 mg kg-1) on root colonization, plant growth, nutrient uptake and essential oil content in Mentha piperita L. The experiment was carried out in a greenhouse, in 4x2 factorial arrangement, in completely randomized design. At sixty days after transplanting, the mycorrhizal plants had significantly higher fresh matter, dry matter and leaf area compared to non-mycorrhizal plants. The inoculation increased P, K and Ca levels in the shoot which were higher under 40 mg P kg-1 of soil. Plants grown with 40 mg P kg-1 soil increased the essential oil yield per plant by about 40-50% compared to those cultivated with 10 mg P kg-1, regardless of the mycorrhizal treatment. Among the studied fungal species, inoculation with G. intraradices A4 and a high level of P significantly increased plant growth and essential oil yield, compared to the other studied mycorrhizal fungal species. In conclusion, inoculation of arbuscular mycorrhizal fungi into peppermint plants is a feasible alternative to increase the essential oil production and reduce the use of fertilizers required to obtain economic production of peppermint under phosphorus-deficient soil condition.


Author(s):  
Kamile Ulukapı ◽  
Zehra Kurt ◽  
Sevinc Sener

Arbuscular mycorrhizal fungi (AMF), which are beneficial soil organisms, have an important role in the uptake of plant nutrients by roots and thus help to healthy plant growth. The aim of this study was to determine the effects of AMF inoculation on the development of water-deficiency applied pepper plants. In this study, Tesla F1 pepper cultivars, Glomus etunicatum inoculated and without Glomus etunicatum, were exposed to four different irrigation regimes (25I, 50I, 75I, 100I). At the end of the experiment these plants were compared in terms of some vegetative and fruit properties. For this purpose, at the end of the trial; shoot length (cm), root length (cm), root spread (cm), number of leaves, leaf width and length (mm), stem diameter (mm), fruit width (mm), fruit length (mm), root and shoot weights (g), fruit pH, total soluble solid content and chlorophyll index were measured. P (phosphorus) and K (potassium) contents of leaves samples taken from plants were determined. As a result, it was determined that 75I irrigation regime gave the best results in terms of both plant growth and fruit properties in all mycorrhizal and non-mycorrhizal plants. It was also concluded that 75% irrigation level is sufficient for plant growth.


Sign in / Sign up

Export Citation Format

Share Document