scholarly journals CELSR1 Promotes Neuroprotection in Cerebral Ischemic Injury Mainly through the Wnt/PKC Signaling Pathway

2020 ◽  
Vol 21 (4) ◽  
pp. 1267 ◽  
Author(s):  
Li-Hong Wang ◽  
Geng-Lin Zhang ◽  
Xing-Yu Liu ◽  
Ai Peng ◽  
Hai-Yuan Ren ◽  
...  

Cadherin epidermal growth factor (EGF) laminin G (LAG) seven-pass G-type receptor 1 (CELSR1) is a member of a special subgroup of adhesion G protein-coupled receptors. Although Celsr1 has been reported to be a sensitive gene for stroke, the effect of CELSR1 in ischemic stroke is still not known. Here, we investigated the effect of CELSR1 on neuroprotection, neurogenesis and angiogenesis in middle cerebral artery occlusion (MCAO) rats. The mRNA expression of Celsr1 was upregulated in the subventricular zone (SVZ), hippocampus and ischemic penumbra after cerebral ischemic injury. Knocking down the expression of Celsr1 in the SVZ with a lentivirus significantly reduced the proliferation of neuroblasts, the number of CD31-positive cells, motor function and rat survival and increased cell apoptosis and the infarct volume in MCAO rats. In addition, the expression of p-PKC in the SVZ and peri-infarct tissue was downregulated after ischemia/ reperfusion. Meanwhile, in the dentate gyrus of the hippocampus, knocking down the expression of Celsr1 significantly reduced the proliferation of neuroblasts; however, it had no influence on motor function, cell apoptosis or angiogenesis. These data indicate that CELSR1 has a neuroprotective effect on cerebral ischemia injury by reducing cell apoptosis in the peri-infarct cerebral cortex and promoting neurogenesis and angiogenesis, mainly through the Wnt/PKC pathway.

2021 ◽  
Author(s):  
Lixia Zhang ◽  
Yulong Ma ◽  
Min Liu ◽  
Miao Sun ◽  
Jin Wang ◽  
...  

Abstract Growing evidence indicates that estrogen plays a pivotal role in neuroprotection against cerebral ischemia, but the molecular mechanism of this protection is still elusive. N-myc downstream‐regulated gene 2 (Ndrg2), an estrogen-targeted gene, has been shown to exert neuroprotective effects against cerebral ischemia in male mice. However, the role of Ndrg2 in the neuroprotective effect of estrogen remains unknown. In this study, we first detected NDRG2 expression levels in the cortex and striatum in both female and male mice with western blot analyses. We then detected cerebral ischemic injury by constructing middle cerebral artery occlusion and reperfusion (MCAO-R) models in Ndrg2 knockout or conditional knockdown female mice. We further implemented estrogen, ERα or ERβ agonist replacement in the ovariectomized (OVX) Ndrg2 knockouts or conditional knockdowns female mice, then tested for NDRG2 expression, glial fibrillary acidic protein (GFAP) expression, and extent of cerebral ischemic injury. We found that NDRG2 expression was significantly higher in female than in male mice in both the cortex and striatum. Ndrg2 knockouts and conditional knockdowns showed significantly aggravated cerebral ischemic injury in female mice. Estrogen and ERβ replacement treatment (DPN) led to NDRG2 upregulation in both the cortex and striatum of OVX mice. Estrogen and DPN also led to GFAP upregulation in OVX mice. However, the effect of estrogen and DPN in activating astrocytes was lost in Ndrg2 knockouts OVX mice and primary cultured astrocytes, but partially retained in conditional knockdowns OVX mice. Most importantly, we found that the neuroprotective effects of E2 and DPN against cerebral ischemic injury were lost in Ndrg2 knockouts OVX mice but partially retained in conditional knockdowns OVX mice. These findings demonstrate that estrogen alleviated cerebral ischemic injury via ERβ upregulation of Ndrg2, which could activate astrocytes, indicating that Ndrg2 is a critical mediator of E2-induced neuroprotection against cerebral ischemic injury.


2011 ◽  
Vol 39 (05) ◽  
pp. 971-979 ◽  
Author(s):  
Phil-Ok Koh

EGb 761 is an extract of Gingko biloba that is neuroprotective against focal cerebral ischemic injury. PEA-15 (phosphoprotein enriched in astrocytes 15) modulates cell proliferation and apoptosis. In this study, we investigated whether EGb 761 regulates the expression of PEA-15 and two phosphorylated forms of PEA-15 (Ser 104 and Ser 116) in middle cerebral artery occlusion (MCAO)-induced injury. Adult male rats were treated with vehicle or EGb 761 (100 mg/kg) prior to MCAO and cerebral cortices were collected 24 h after MCAO. A reduction in expression of PEA-15 and its phosphorylated forms induced by MCAO injury was detected using a proteomic approach. EGb 761 pretreatment prevented the ischemic injury-induced decrease in PEA-15 expression. Western blot analysis demonstrated that EGb 761 attenuates the injury-induced reduction in PEA-15, phospho-PEA-15 (Ser 104), phospho-PEA-15 (Ser 116). Phosphorylation of PEA-15 influences its anti-apoptotic function; a decrease in PEA-15 phosphorylation induces apoptotic cell death. The maintenance of PEA-15 phosphorylation by EGb 761 pretreatment during cerebral ischemic injury indicates that EGb 761 is a neuroprotective against cerebral ischemic injury.


2016 ◽  
Vol 94 (11) ◽  
pp. 1187-1192 ◽  
Author(s):  
Mengyang Shui ◽  
Xiaoyan Liu ◽  
Yuanjun Zhu ◽  
Yinye Wang

Hydrogen sulfide (H2S), the third gas transmitter, has been proven to be neuroprotective in cerebral ischemic injury, but whether its effect is mediated by regulating autophagy is not yet clear. The present study was undertaken to explore the underlying mechanisms of exogenous H2S on autophagy regulation in cerebral ischemia. The effects and its connection with autophagy of NaHS, a H2S donor, were observed through neurological deficits and cerebral infarct volume in middle cerebral artery occlusion (MCAO) mice; autophagy-related proteins and autophagy complex levels in the ischemic hemisphere were detected with Western blot assay. Compared with the model group, NaHS significantly decreased infarct volume and improved neurological deficits; rapamycin, an autophagy activator, abolished the effect of NaHS; NaHS decreased the expression of LC3-II and up-regulated p62 expression in the ischemic cortex 24 h after ischemia. However, NaHS did not significantly influence Beclin-1 expression. H2S has a neuroprotective effect on ischemic injury in MCAO mice; this effect is associated with its influence in down-regulating autophagosome accumulation.


Marine Drugs ◽  
2019 ◽  
Vol 17 (9) ◽  
pp. 501 ◽  
Author(s):  
Ran Kim ◽  
Daeun Hur ◽  
Hyoung Kyu Kim ◽  
Jin Han ◽  
Natalia P. Mishchenko ◽  
...  

Of late, researchers have taken interest in alternative medicines for the treatment of brain ischemic stroke, where full recovery is rarely seen despite advanced medical technologies. Due to its antioxidant activity, Echinochrome A (Ech A), a natural compound found in sea urchins, has acquired attention as an alternative clinical trial source for the treatment of ischemic stroke. The current study demonstrates considerable potential of Ech A as a medication for cerebral ischemic injury. To confirm the effects of Ech A on the recovery of the injured region and behavioral decline, Ech A was administered through the external carotid artery in a rat middle cerebral artery occlusion model after reperfusion. The expression level of cell viability-related factors was also examined to confirm the mechanism of brain physiological restoration. Based on the results obtained, we propose that Ech A ameliorates the physiological deterioration by its antioxidant effect which plays a protective role against cell death, subsequent to post cerebral ischemic stroke.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Na Shi ◽  
Chongtian Zhu ◽  
Liying Li

This study was conducted to investigate the recovery of motor function in rats through the silent information regulator factor 2-related enzyme 1 (Sirt1) signal pathway-mediated rehabilitation training. Middle cerebral artery occlusion (MACO) was used to induce ischemia/reperfusion injury. The rats were subjected to no treatment (model), rehabilitation training (for 21 days), resveratrol (5 mg/kg for 21 days), and rehabilitation training plus resveratrol treatment. 24 h later, They were assessed for neurobehavioral score and motor behavior score and expression of brain derived-nerve neurotrophic factor (BDNF) and tyrosine kinase receptor B (TrkB). Compared with sham group, models had significantly higher neurobehavioral scores, balance beam, and rotary stick scores. Compared with the model group, rats in rehabilitation training and resveratrol groups had significantly reduced scores. Compared with rehabilitation training or resveratrol treatment alone, rehabilitation plus resveratrol further reduced the scores significantly. The percentage of cells expressing BDNF and TrkB and expression levels of BDNF and TrkB were similar between the model and sham groups, significantly increased in rehabilitation training and resveratrol groups, and further increased in rehabilitation training plus resveratrol group. These results indicate that rehabilitation raining plus resveratrol can significantly improve the recovery of motor function in rats after cerebral ischemic injury, which is likely related to the upregulation of the BDNF/TrkB signaling pathway.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Gongwei Jia ◽  
Botao Tan ◽  
Jingxi Ma ◽  
Lina Zhang ◽  
Xinhao Jin ◽  
...  

Background. The role of Peroxiredoxin 6 (Prdx6) in brain ischemia remains unclear. Curcumin (Cur) treatment elicits neuroprotective effects against cerebral ischemic injury, and the associated mechanisms may involve Prdx6. In this study, we investigated whether Prdx6 and the transcription factor specific protein 1 (SP1) were involved in the antioxidant effect of Cur after stoke. Methods. Focal cerebral ischemic injury was induced by transient middle cerebral artery occlusion for 2 hours in male Sprague-Dawley rats treated with or without Prdx6 siRNA. Expression of Prdx6 in the penumbra was assessed by Real-Time PCR (RT-PCR), Western blot analysis, and immunoflourescent staining. In addition, infarct volume, neurological deficit score, and oxidative stress were evaluated. Prdx6 levels were also determined in the presence and absence of SP1 antagonist mithramycin A (MTM-A). Results. Cur treatment upregulated Prdx6 protein expression and the number of Prdx6-positive neuronal cells 24 hours after reperfusion. Cur treatment also attenuated oxidative stress and induced neuroprotective effects against ischemic damage, whereas the beneficial effects of Cur treatment were lost in animals treated with Prdx6-siRNA. Prdx6 upregulation by Cur treatment was abolished by SP1 antagonists MTM. Conclusions. Prdx6 upregulation by Cur treatment attenuates ischemic oxidative damage through SP1 induction in rats after stroke. This represents a novel mechanism of Cur-induced neuroprotection against cerebral ischemia.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Zhou-Quan Wu ◽  
Su-yang Cui ◽  
Liang Zhu ◽  
Zhi-qing Zou

This study is aimed at investigating the association between the electroacupuncture (EA) pretreatment-induced protective effect against early cerebral ischemic injury and autophagy. EA pretreatment can protect cerebral ischemic and reperfusion injuries, but whether the attenuation of early cerebral ischemic injury by EA pretreatment was associated with autophagy is not yet clear. This study used the middle cerebral artery occlusion model to monitor the process of ischemic injury. For rats in the EA pretreatment group, EA pretreatment was conducted at Baihui acupoint before ischemia for 30 min for 5 consecutive days. The results suggested that EA pretreatment significantly increased the expression of autophagy in the cerebral cortical area on the ischemic side of rats. But the EA pretreatment-induced protective effects on the brain could be reversed by the specific inhibitor 3-methyladenine of autophagy. Additionally, the Pearson correlation analysis indicated that the impact of EA pretreatment on p-mTOR (2481) was negatively correlated with its impact on autophagy. In conclusion, the mechanism of EA pretreatment at Baihui acupoint against cerebral ischemic injury is mainly associated with the upregulation of autophagy expression, and its regulation of autophagy may depend on mTOR-mediated signaling pathways.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Zun-Jing Liu ◽  
Wei Liu ◽  
Lei Liu ◽  
Cheng Xiao ◽  
Yu Wang ◽  
...  

Cerebral ischemia is the most common cerebrovascular disease worldwide. Recent studies have demonstrated that curcumin had beneficial effect to attenuate cerebral ischemic injury. However, it is unclear how curcumin protects against cerebral ischemic injury. In the present study, using rat middle cerebral artery occlusion model, we found that curcumin was a potent PPARγagonist in that it upregulated PPARγexpression and PPARγ-PPRE binding activity. Administration of curcumin markedly decreased the infarct volume, improved neurological deficits, and reduced neuronal damage of rats. In addition, curcumin suppressed neuroinflammatory response by decreasing inflammatory mediators, such as IL-1β, TNF-α, PGE2, NO, COX-2, and iNOS induced by cerebral ischemia of rats. Furthermore, curcumin suppressed IκB degradation that was caused by cerebral ischemia. The present data also showed that PPARγinteracted with NF-κB-p65 and thus inhibited NF-κB activation. All the above protective effects of curcumin on cerebral ischemic injury were markedly attenuated by GW9662, an inhibitor of PPARγ. Our results as described above suggested that PPARγinduced by curcumin may play a critical role in protecting against brain injury through suppression of inflammatory response. It also highlights the potential of curcumin as a therapeutic agent against cerebral ischemia.


2002 ◽  
Vol 283 (3) ◽  
pp. H1005-H1011 ◽  
Author(s):  
Katsuyoshi Shimizu ◽  
Zsombor Lacza ◽  
Nishadi Rajapakse ◽  
Takashi Horiguchi ◽  
James Snipes ◽  
...  

We investigated effects of diazoxide, a selective opener of mitochondrial ATP-sensitive K+ (mitoKATP) channels, against brain damage after middle cerebral artery occlusion (MCAO) in male Wistar rats. Diazoxide (0.4 or 2 mM in 30 μl saline) or saline (sham) was infused into the right lateral ventricle 15 min before MCAO. Neurological score was improved 24 h later in the animals treated with 2 mM diazoxide (13.8 ± 0.7, n = 13) compared with sham treatment (9.5 ± 0.2, n = 6, P < 0.01). The total percent infarct volume (MCAO vs. contralateral side) of sham treatment animals was 43.6 ± 3.6% ( n = 12). Treatment with 2 mM diazoxide reduced the infarct volume to 20.9 ± 4.8% ( n = 13, P < 0.05). Effects of diazoxide were prominent in the cerebral cortex. The protective effect of diazoxide was completely prevented by the pretreatment with 5-hydroxydecanoate (100 mM in 10 μl saline), a selective blocker of mitoKATP channels ( n = 6). These results indicate that selective opening of the mitoKATP channel has neuroprotective effects against ischemia-reperfusion injury in the rat brain.


Sign in / Sign up

Export Citation Format

Share Document