scholarly journals Resveratrol Suppresses Prostate Cancer Epithelial Cell Scatter/Invasion by Targeting Inhibition of Hepatocyte Growth Factor (HGF) Secretion by Prostate Stromal Cells and Upregulation of E-cadherin by Prostate Cancer Epithelial Cells

2020 ◽  
Vol 21 (5) ◽  
pp. 1760 ◽  
Author(s):  
Tze-chen Hsieh ◽  
Joseph M Wu

Cancer mortality is primarily attributed to metastasis and the resulting compromise of organs secondary to the initial tumor site. Metastasis is a multi-step process in which the tumor cells must first acquire a migratory phenotype and invade through the surrounding tissue for spread to distant organs in the body. The ability of malignant cells to migrate and breach surrounding tissue/matrix barriers is among the most daunting challenges to disease management for men in the United States diagnosed with prostate cancer (CaP), especially since, at diagnosis, a high proportion of patients already have occult or clinically-detectable metastasis. The interaction between hepatocyte growth factor (HGF) secreted by the stroma, with its receptor c-Met located in the epithelium, must occur for epithelial CaP cells to become migratory. We studied the effects of grape-derived phytochemical resveratrol on the transition of epithelial tumor cells from sedentary to a mobile, penetrant phenotype. A time lapse microscopy assay was used to monitor the acquisition of the migratory phenotype by resveratrol. The results show that resveratrol inhibits HGF-mediated interaction between the stroma and epithelium and suppresses epithelial CaP cell migration by attenuating the control of epithelial-to-mesenchymal transition (EMT).

2000 ◽  
Vol 11 (10) ◽  
pp. 3397-3410 ◽  
Author(s):  
Tanya M. Fournier ◽  
Louie Lamorte ◽  
Christiane R. Maroun ◽  
Mark Lupher ◽  
Hamid Band ◽  
...  

Dispersal of epithelial cells is an important aspect of tumorigenesis, and invasion. Factors such as hepatocyte growth factor induce the breakdown of cell junctions and promote cell spreading and the dispersal of colonies of epithelial cells, providing a model system to investigate the biochemical signals that regulate these events. Multiple signaling proteins are phosphorylated in epithelial cells during hepatocyte growth factor–induced cell dispersal, including c-Cbl, a protooncogene docking protein with ubiquitin ligase activity. We have examined the role of c-Cbl and a transforming variant (70z-Cbl) in epithelial cell dispersal. We show that the expression of 70z-Cbl in Madin-Darby canine kidney epithelial cells resulted in the breakdown of cell–cell contacts and alterations in cell morphology characteristic of epithelial–mesenchymal transition. Structure–function studies revealed that the amino-terminal portion of c-Cbl, which corresponds to the Cbl phosphotyrosine-binding/Src homology domain 2 , is sufficient to promote the morphological changes in cell shape. Moreover, a point mutation at Gly-306 abrogates the ability of the Cbl Src homology domain 2 to induce these morphological changes. Our results identify a role for Cbl in the regulation of epithelial–mesenchymal transition, including loss of adherens junctions, cell spreading, and the initiation of cell dispersal.


2018 ◽  
Vol 19 (11) ◽  
pp. 3672 ◽  
Author(s):  
Yutaro Tsubakihara ◽  
Aristidis Moustakas

Metastasis of tumor cells from primary sites of malignancy to neighboring stromal tissue or distant localities entails in several instances, but not in every case, the epithelial-mesenchymal transition (EMT). EMT weakens the strong adhesion forces between differentiated epithelial cells so that carcinoma cells can achieve solitary or collective motility, which makes the EMT an intuitive mechanism for the initiation of tumor metastasis. EMT initiates after primary oncogenic events lead to secondary secretion of cytokines. The interaction between tumor-secreted cytokines and oncogenic stimuli facilitates EMT progression. A classic case of this mechanism is the cooperation between oncogenic Ras and the transforming growth factor β (TGFβ). The power of TGFβ to mediate EMT during metastasis depends on versatile signaling crosstalk and on the regulation of successive waves of expression of many other cytokines and the progressive remodeling of the extracellular matrix that facilitates motility through basement membranes. Since metastasis involves many organs in the body, whereas EMT affects carcinoma cell differentiation locally, it has frequently been debated whether EMT truly contributes to metastasis. Despite controversies, studies of circulating tumor cells, studies of acquired chemoresistance by metastatic cells, and several (but not all) metastatic animal models, support a link between EMT and metastasis, with TGFβ, often being a common denominator in this link. This article aims at discussing mechanistic cases where TGFβ signaling and EMT facilitate tumor cell dissemination.


2020 ◽  
Vol 9 (7) ◽  
pp. 2074 ◽  
Author(s):  
Hironori Tsujimoto ◽  
Hiroyuki Horiguchi ◽  
Yusuke Matsumoto ◽  
Risa Takahata ◽  
Nariyoshi Shinomiya ◽  
...  

Background: Increasing evidence has demonstrated that postoperative infectious complications (PICs) after digestive surgery are significantly associated with negative long-term outcomes; however, precise mechanisms of how PICs affect the poor long-term survival remain unclear. Here, we focused on the hepatocyte growth factor (HGF)/c-Met signaling pathway as one of those mechanisms. Methods: In the clinical setting, serum HGF levels were measured in the patients with sepsis and those with PICs after undergoing esophagectomy. Using a liver metastasis mouse model with cecal ligation and puncture (CLP), expressions of HGF and the roles of the HGF/c-Met pathway in the progression of tumor cells were examined. Results: Serum HGF levels were very high in the patients with intra-abdominal infection on postoperative days (PODs) 1, 3, and 5; similarly, compared to the patients without PICs, those with PICs had significantly higher serum HGF levels on 1, 3, and 5 days after esophagectomy. The patients with PICs showed poorer overall survival than those without PICs, and the patients with high serum HGF levels on POD 3 showed poorer prognosis than those with low HGF levels. Similarly, at 24 and 72 h after operation, serum levels of HGF in CLP mice were significantly higher than those in sham-operated mice. Intraperitoneal injection of mouse recombinant HGF significantly promoted liver metastases in sham-operated mice on 14 days after surgery. Knocking down c-Met expression on NL17 tumor cells by RNAi technology significantly inhibited the promotion of CLP-induced liver metastases. Conclusions: Infections after surgery increased serum HGF levels in the clinical as well as experimental settings. Induction of high serum HGF levels by CLP promoted liver metastases in a murine liver metastasis model, suggesting the involvement of the HGF/c-Met signaling pathway in tumor promotion mechanisms. Thus, targeting the HGF/c-Met signaling pathway may be a promising approach for malignant tumors, particularly in the patients with PICs.


Urology ◽  
2001 ◽  
Vol 58 (6) ◽  
pp. 1064-1069 ◽  
Author(s):  
Hidenobu Miura ◽  
Kenji Nishimura ◽  
Akira Tsujimura ◽  
Kiyomi Matsumiya ◽  
Kunio Matsumoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document