scholarly journals Endocrine-Disrupting Chemicals and Their Effects during Female Puberty: A Review of Current Evidence

2020 ◽  
Vol 21 (6) ◽  
pp. 2078 ◽  
Author(s):  
Laura Lucaccioni ◽  
Viola Trevisani ◽  
Lucia Marrozzini ◽  
Natascia Bertoncelli ◽  
Barbara Predieri ◽  
...  

Puberty is the process of physical changes between childhood and adulthood during which adolescents reach sexual maturity and become capable of reproduction. It is considered one of the main temporal windows of susceptibility for the influence of the endocrine-disrupting chemicals (EDCs). EDCs may act as single chemical agents or as chemical mixtures; they can be pubertal influencers, accelerating and anticipating the processing of maturation of secondary sexual characteristics. Moreover, recent studies have started to point out how exposure to EDCs during puberty may predispose to breast cancer later in life. In fact, the estrogen-mimicking endocrine disruptors (EEDs) may influence breast tissue development during puberty in two main ways: the first is the action on the proliferation of the breast stromal cells, the second concerns epigenetic mechanisms. The aim of this mini-review was to better highlight what is new and what is not completely known regarding the role of EDCs during puberty.

2021 ◽  
Vol 22 (8) ◽  
pp. 4063
Author(s):  
Laura Lucaccioni ◽  
Viola Trevisani ◽  
Erica Passini ◽  
Beatrice Righi ◽  
Carlotta Plessi ◽  
...  

Phthalates, as other endocrine disrupting chemicals (EDCs), may alter the homeostasis and the action of hormones and signaling molecules, causing adverse health outcomes. This is true especially for infants, who are both more exposed and sensitive to their effects. Phthalates are particularly harmful when the exposure occurs during certain critical temporal windows of the development, such as the prenatal and the early postnatal phases. Phthalates may also interfere with the neuroendocrine systems (e.g., thyroid hormone signaling or metabolism), causing disruption of neuronal differentiation and maturation, increasing the risk of behavioral and cognitive disorders (ADHD and autistic behaviors, reduced mental, psychomotor, and IQ development, and emotional problems). Despite more studies being needed to better understand the role of these substances, plenty of evidence suggests the impact of phthalates on the neuroendocrine system development and function. This review aims to update the knowledge on the neuroendocrine consequences of neonatal and perinatal exposure to phthalates.


2010 ◽  
Vol 67 (11) ◽  
pp. 1730-1743 ◽  
Author(s):  
Michelle M. McGree ◽  
Dana L. Winkelman ◽  
Nicole  K.M.  Vieira ◽  
Alan  M.  Vajda

Endocrine disrupting chemicals (EDCs) have been detected in surface waters worldwide and can lead to developmental and reproductive disruption in exposed fishes. In the US Great Plains, EDCs are impacting streams and rivers and may be causing adverse reproductive effects. To examine how estrogenic EDCs might affect reproductive success of plains fishes, we experimentally exposed male red shiners ( Cyprinella lutrensis ) to exogenous 17β-estradiol. We characterized the effects of estradiol on male gonadal histology and secondary sexual characteristics, determined whether exposure reduced reproductive success, and examined the effects of depuration. Adults were exposed to a mean concentration of 70 ng·L−1 estradiol, a solvent control, or a water control for at least 83 days. Male exposure to estradiol resulted in elevated plasma vitellogenin concentrations, changes in spermatogenesis, reduced mating coloration and tubercles, altered mating behaviors, and reduced reproductive success with no viable progeny produced. Reproductive endpoints improved upon depuration (28 days). Exposure to estradiol had significant adverse effects on red shiners, indicating that wild populations may face developmental and reproductive difficulties if they are chronically exposed to estradiol.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuqing Zhang ◽  
Yingying Lu ◽  
Huiyuan Ma ◽  
Qing Xu ◽  
Xiaoli Wu

BackgroundUterine leiomyomata (UL) and endometriosis (EM) are common gynecological diseases damaging the reproductive health of fertile women. Among all the potential factors, environmental endocrine-disrupting chemicals are insufficiently addressed considering the multiple pollutants and mixture exposure.MethodsWomen aged 20 to 54 years old in the National Health and Nutrition Examination Survey (NHANES) 2001-2006, having a complete measurement of ten commonly exposed endocrine-disrupting chemicals (including urinary phthalate metabolites, equol, and whole blood heavy metals) and answered questions about UL and EM were included (N=1204). Multivariable logistic regression model, weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR) models were implemented to analyze the combined effect of chemicals on the overall association with UL and EM.ResultsIn single chemical analysis, equol (OR: 1.90, 95% CI: 1.11, 3.27) and mercury (Hg) (OR: 1.91, 95% CI: 1.14, 3.25) were found positively associated with UL in tertile 3 vs. tertile 1. In WQS regression and BKMR models, the significant positive association between WQS index and UL (OR: 2.54, 95% CI: 1.52, 4.29) was identified and the positive relationship between equol and Hg exposure and UL were further verified. Besides, the mixture evaluation models (WQS and BKMR) also found MEHP negatively associated with UL. Although none of the single chemicals in tertile 3 were significantly associated with EM, the WQS index had a marginally positive association with EM (OR: 2.01, 95% CI: 0.98, 4.15), and a significant positive association was identified in subanalysis with participants restricted to premenopausal women (OR: 2.18, 95% CI: 1.03, 4.70). MIBP and MBzP weighted high in model of EM and MEHP weighted the lowest.ConclusionComparing results from these three statistical models, the associations between equol, Hg, and MEHP exposure with UL as well as the associations of MIBP, MBzP, and MEHP exposure with EM warrant further research.


1993 ◽  
Vol 14 (9) ◽  
pp. 336-367

Puberty is a transitional stage associated with many changes, both physical and emotional. The endocrinologic changes, consisting of two processes, gonadarche and adrenarche, result in the development of secondary sexual characteristics and the pubertal growth spurt. Gonadarche, the maturation of the gonads, is initiated by the episodic pulsatile secretion of gonadotropin-releasing hormone (GnRH) from the hypothalamus. Adrenarche refers to the increase in adrenal androgen secretion (the mechanism responsible for this is unknown). Both of these processes cause an increase in sex steroid secretion, which results in the physical changes of puberty. In the United States, normal puberty occurs between 8 to 13 years in girls and 9 to 14 years in boys.


2020 ◽  
Vol 26 (2) ◽  
pp. 214-246 ◽  
Author(s):  
Pilar García-Peñarrubia ◽  
Antonio J Ruiz-Alcaraz ◽  
María Martínez-Esparza ◽  
Pilar Marín ◽  
Francisco Machado-Linde

Abstract BACKGROUND Endometriosis is a gynaecological hormone-dependent disorder that is defined by histological lesions generated by the growth of endometrial-like tissue out of the uterus cavity, most commonly engrafted within the peritoneal cavity, although these lesions can also be located in distant organs. Endometriosis affects ~10% of women of reproductive age, frequently producing severe and, sometimes, incapacitating symptoms, including chronic pelvic pain, dysmenorrhea and dyspareunia, among others. Furthermore, endometriosis causes infertility in ~30% of affected women. Despite intense research on the mechanisms involved in the initial development and later progression of endometriosis, many questions remain unanswered and its aetiology remains unknown. Recent studies have demonstrated the critical role played by the relationship between the microbiome and mucosal immunology in preventing sexually transmitted diseases (HIV), infertility and several gynaecologic diseases. OBJECTIVE AND RATIONALE In this review, we sought to respond to the main research question related to the aetiology of endometriosis. We provide a model pointing out several risk factors that could explain the development of endometriosis. The hypothesis arises from bringing together current findings from large distinct areas, linking high prenatal exposure to environmental endocrine-disrupting chemicals with a short anogenital distance, female genital tract contamination with the faecal microbiota and the active role of genital subclinical microbial infections in the development and clinical progression of endometriosis. SEARCH METHODS We performed a search of the scientific literature published until 2019 in the PubMed database. The search strategy included the following keywords in various combinations: endometriosis, anogenital distance, chemical pollutants, endocrine-disrupting chemicals, prenatal exposure to endocrine-disrupting chemicals, the microbiome of the female reproductive tract, microbiota and genital tract, bacterial vaginosis, endometritis, oestrogens and microbiota and microbiota–immune system interactions. OUTCOMES On searching the corresponding bibliography, we found frequent associations between environmental endocrine-disrupting chemicals and endometriosis risk. Likewise, recent evidence and hypotheses have suggested the active role of genital subclinical microbial infections in the development and clinical progression of endometriosis. Hence, we can envisage a direct relationship between higher prenatal exposure to oestrogens or estrogenic endocrine-disrupting compounds (phthalates, bisphenols, organochlorine pesticides and others) and a shorter anogenital distance, which could favour frequent postnatal episodes of faecal microbiota contamination of the vulva and vagina, producing cervicovaginal microbiota dysbiosis. This relationship would disrupt local antimicrobial defences, subverting the homeostasis state and inducing a subclinical inflammatory response that could evolve into a sustained immune dysregulation, closing the vicious cycle responsible for the development of endometriosis. WIDER IMPLICATIONS Determining the aetiology of endometriosis is a challenging issue. Posing a new hypothesis on this subject provides the initial tool necessary to design future experimental, clinical and epidemiological research that could allow for a better understanding of the origin of this disease. Furthermore, advances in the understanding of its aetiology would allow the identification of new therapeutics and preventive actions.


2003 ◽  
Vol 75 (11-12) ◽  
pp. 2549-2553
Author(s):  
J. C. Lamb ◽  
H. B. W. M. Koëter ◽  
R. Becker ◽  
A. Gies ◽  
Les Davies ◽  
...  

This workshop was convened to address common issues and concerns associated with risk management of endocrine-disrupting chemicals (EDCs). The talks described the tools and policies for key Japanese, Australian, German, and U.S. regulatory agencies. The agencies participating in the workshop were responsible for the regulation of various substances including: chemicals, pesticides, environmental contamination, pharmaceuticals, and food additives. The panel also described the role of the Organization for Economic Cooperation and Development (OECD) in standardizing the tools and validation of testing and screening methods. The panel also included nongovernmental organizations presenting the views of the World Wildlife Fund, and the chemical industry from industrialized nations; each organization described its concerns and proposed approaches to risk management of EDCs. This summary highlights the most important areas of common points of view of government, industry, and environmentalists. We also try to identify issues upon which viewpoints diverge.


Sign in / Sign up

Export Citation Format

Share Document