scholarly journals A New Selective PPARγ Modulator Inhibits Triglycerides Accumulation during Murine Adipocytes’ and Human Adipose-Derived Mesenchymal Stem Cells Differentiation

2020 ◽  
Vol 21 (12) ◽  
pp. 4415
Author(s):  
Ghina Al Haj ◽  
Federica Rey ◽  
Toniella Giallongo ◽  
Mattia Colli ◽  
Barbara Marzani ◽  
...  

Understanding the molecular basis of adipogenesis is vital to identify new therapeutic targets to improve anti-obesity drugs. The adipogenic process could be a new target in the management of this disease. Our aim was to evaluate the effect of GMG-43AC, a selective peroxisome proliferator-activated receptor γ (PPARγ) modulator, during adipose differentiation of murine pre-adipocytes and human Adipose Derived Stem Cells (hADSCs). We differentiated 3T3-L1 cells and primary hADSCs in the presence of various doses of GMG-43AC and evaluated the differentiation efficiency measuring lipid accumulation, the expression of specific differentiation markers and the quantification of accumulated triglycerides. The treatment with GMG-43AC is not toxic as shown by cell viability assessments after the treatments. Our findings demonstrate the inhibition of lipid accumulation and the significant decrease in the expression of adipocyte-specific genes, such as PPARγ, FABP-4, and leptin. This effect was long lasting, as the removal of GMG-43AC from culture medium did not allow the restoration of adipogenic process. The above actions were confirmed in hADSCs exposed to adipogenic stimuli. Together, these results indicate that GMG-43AC efficiently inhibits adipocytes differentiation in murine and human cells, suggesting its possible function in the reversal of adipogenesis and modulation of lipolysis.

2019 ◽  
Vol 20 (22) ◽  
pp. 5589
Author(s):  
Jaeim Lee ◽  
Ok-Hee Kim ◽  
Sang Chul Lee ◽  
Kee-Hwan Kim ◽  
Jin Sun Shin ◽  
...  

Peroxisome proliferator activated receptor λ coactivator 1α (PGC-1α) is a potent regulator of mitochondrial biogenesis and energy metabolism. In this study, we investigated the therapeutic potential of the secretome released from the adipose-derived stem cells (ASCs) transfected with PGC-1α (PGC-secretome). We first generated PGC-1α-overexpressing ASCs by transfecting ASCs with the plasmids harboring the gene encoding PGC-1α. Secretory materials released from PGC-1α-overexpressing ASCs were collected and their therapeutic potential was determined using in vitro (thioacetamide (TAA)-treated AML12 cells) and in vivo (70% partial hepatectomized mice) models of liver injury. In the TAA-treated AML12 cells, the PGC-secretome significantly increased cell viability, promoted expression of proliferation-related markers, such as PCNA and p-STAT, and significantly reduced the levels of reactive oxygen species (ROS). In the mice, PGC-secretome injections significantly increased liver tissue expression of proliferation-related markers more than normal secretome injections did (p < 0.05). We demonstrated that the PGC-secretome does not only have higher antioxidant and anti-inflammatory properties, but also has the potential of significantly enhancing liver regeneration in both in vivo and in vitro models of liver injury. Thus, reinforcing the mitochondrial antioxidant potential by transfecting ASCs with PGC-1α could be one of the effective strategies to enhance the therapeutic potential of ASCs.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Ke Chen ◽  
Zi Guo ◽  
Yufang Luo ◽  
Jingjing Yuan ◽  
Zhaohui Mo

Once the adipose tissue is enlarged for the purpose of saving excess energy intake, obesity may be observed. Ubiquitin-like with PHD and RING Finger domains 1 (UHRF1) is helpful in repairing damaged DNA as it increases the resistance of cancer cells against cytocidal drugs. Peroxisome proliferator-activated receptor γ (PPARγ), an important nucleus transcription factor participating in adipogenesis, has been extensively reported. To date, no study has indicated whether UHRF1 can regulate proliferation and differentiation of human adipose-derived stem cells (hADSCs). Hence, this study aimed to utilize overexpression or downregulation of UHRF1 to explore the possible mechanism of proliferation and differentiation of hADSCs. We here used lentivirus, containing UHRF1 (LV-UHRF1) and siRNA-UHRF1 to transfect hADSCs, on which Cell Counting Kit-8 (CCK-8), cell growth curve, colony formation assay, and EdU proliferation assay were applied to evaluate proliferation of hADSCs, cells cycle was investigated by flow cytometry, and adipogenesis was detected by Oil Red O staining and Western blotting. Our results showed that UHRF1 can promote proliferation of hADSCs after overexpression of UHRF1, while proliferation of hADSCs was reduced through downregulation of UHRF1, and UHRF1 can control proliferation of hADSCs through transition from G1-phase to S-phase; besides, we found that UHRF1 negatively regulates adipogenesis of hADSCs via PPARγ. In summary, the results may provide a new insight regarding the role of UHRF1 on regulating proliferation and differentiation of hADSCs.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1531
Author(s):  
Abu Yousuf Hossin ◽  
Masashi Inafuku ◽  
Kensaku Takara ◽  
Ruwani N. Nugara ◽  
Hirosuke Oku

Cirsium brevicaule A. GRAY is a wild perennial herb, and its roots (CbR) have traditionally been used as both food and medicine on the Japanese islands of Okinawa and Amami. The present study evaluated the antiadipogenic effect of CbR using mouse embryonic fibroblast cell line 3T3-L1 from JCRB cell bank. Dried CbR powder was serially extracted with solvents of various polarities, and these crude extracts were tested for antiadipogenic activity. Treatment with the methanol extract of CbR showed a significant suppression of lipid accumulation in 3T3-L1 cells. Methanol extract of CbR was then fractionated and subjected to further activity analyses. The phenylpropanoid glycosidic molecule syringin was identified as an active compound. Syringin dose dependently suppressed lipid accumulation of 3T3-L1 cells without cytotoxicity, and significantly reduced the expressions of peroxisome proliferator-activated receptor gamma, the master regulator of adipogenesis, and other differentiation markers. It was demonstrated that syringin effectively enhanced the phosphorylation of the AMP-activated protein kinase and acetyl-CoA carboxylase. These results indicate that syringin attenuates adipocyte differentiation, adipogenesis, and promotes lipid metabolism; thus, syringin may potentially serve as a therapeutic candidate for treatment of obesity.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 366
Author(s):  
In Sil Park ◽  
Youngjin Han ◽  
HyunA Jo ◽  
Ki Won Lee ◽  
Yong Sang Song

Resveratrol (3,4′,5-trans-trihydroxystilbene) and piceatannol (3,3′,4′,5-trans-tetraphydroxystilbene) are major stilbene compounds that are predominantly present in various natural foods, such as berries and fruits. Both phytochemical compounds are consumed as dietary supplements to prevent various metabolic diseases and for their anti-aging properties. Adipose-derived stem cells from human visceral adipose tissue (vASCs) are a useful in vitro model for evaluating their adipogenic effect. Treatment with resveratrol and piceatannol significantly inhibited lipid accumulation in vASCs. Their effective concentrations were 5, 10, and 20 μM for inhibiting adipogenesis of vASCs. Interestingly, despite the similar chemical structures of the two compounds, piceatannol showed a higher anti-adipogenic effect at 20 μM than resveratrol in vASCs. Moreover, the inhibitory capacity of lipid droplet generation was higher for piceatannol at 20 μM than that of resveratrol. Piceatannol significantly attenuated the expression level of adipogenic markers (e.g., CCAAT/enhanced binding protein α (C/EBPα), peroxisome proliferator-activated receptor γ (PPARγ), and adipocyte fatty acid binding protein (aP2)) compared to resveratrol at the mRNA and protein levels. These results suggest that piceatannol is a superior anti-adipogenic compound compared to resveratrol in the vASC model of visceral obesity.


2019 ◽  
Vol 6 (6) ◽  
pp. 3213-3221
Author(s):  
Hieu Liem Pham ◽  
Phuc Van Pham

Introduction: The senescence of stem cells is the primary reason that causes aging of stem cell-containing tissues. Some hypotheses have suggested that high glucose concentration in diabetic patients is the main factor that causes senescence of cells in those patients. This study aimed to evaluate the effects of high glucose concentrations on the senescence of adipose-derived stem cells (ADSCs). Methods: ADSCs were isolated and expanded from human adipose tissues. They were characterized and confirmed as mesenchymal stem cells (MSCs) by expression of surface markers, their shape, and in vitro differentiation potential. They were then cultured in 3 different media- that contained 17.5 mM, 35 mM, or 55 mM of D-glucose. The senescent status of ADSCs was recorded by the expression of the enzyme beta-galactosidase, cell proliferation, and doubling time. Real-time RT-PCR was used to evaluate the expression of p16, p21, p53 and mTOR. Results: The results showed that high glucose concentrations (35 mM and 55 mM) in the culture medium induced senescence of human ADSCs. The ADSCs could progress to the senescent status quicker than those cultured in the lower glucose-containing medium (17.5 mM). The senescent state was related to the up-regulation of p16 and mTOR genes. Conclusion: These results suggest that high glucose in culture medium can trigger the expression of p16 and mTOR genes which cause early senescence in ADSCs. Therefore, ADSCs should be cultured in low glucose culture medium, or normal glucose concentration, to extend their life in vitro as well as in vivo.  


Sign in / Sign up

Export Citation Format

Share Document