scholarly journals Bioactive Phenolics and Polyphenols: Current Advances and Future Trends

2020 ◽  
Vol 21 (17) ◽  
pp. 6142
Author(s):  
Daniel A. Jacobo-Velázquez ◽  
Luis Cisneros-Zevallos

Phenolic compounds are secondary plant metabolites with remarkable health-promoting properties [...]

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Nesibe Ebru Kafkas ◽  
Müberra Kosar ◽  
Ayşe Tülin Öz ◽  
Alyson E. Mitchell

Phenolic compounds are a group of secondary plant metabolites, many with health-promoting properties that are present in all parts of plants. They have an aromatic structure, including either one or more hydroxyl groups giving them the ability to stabilize free radicals and protect biological tissues against damage related to reactive oxygen species. Phenolic compounds are concentrated in the fruit of plants, and therefore, the fruit can be an important dietary source of these phytochemicals, which exist as monomers, or bound to one another. Polyphenolic compounds are classified into different subclasses based upon the number of phenol ring systems that they contain, saturation, and length of the carbon chain that bind the rings to one another. The phenolic acids present in fruit tissues protect the plant against disease, infections, UV radiation, and insect damage. For this reason, the beneficiary effects of phenolic compounds are continually being investigated for their health-promoting properties and for meeting increased consumer demand for healthy nutritious food. Due to the functional properties of polyphenolic compounds, there is increased interest on improving extraction, separation, and quantification techniques of these valuable bioactive compounds, so they can be used as value-added ingredients in foods, pharmaceuticals, and cosmetics. This review provides information on the most advanced methods available for the analysis of phenolics in fruits.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nadja Förster ◽  
Kyriaki Antoniadou ◽  
Matthias Zander ◽  
Sebastian Baur ◽  
Verena Karolin Mittermeier-Kleßinger ◽  
...  

Willow bark is traditionally used for pharmaceutical purposes. Evaluation is so far based on the salicylate content, however, health promoting effects of extracts might be attributed to the interaction of those salicylates with other compounds, which support and complement their action. So far, only S. purpurea, S. daphnoides, and S. fragilis are included in pharmaceutical extracts. Crossing with other species could result in a more diverse secondary metabolite profile with higher pharmacological value. With the help of targeted inter- and intraspecific crossing, new chemotypes were generated, whereby nine different Salix genotypes (S. alba, S. daphnoides, S. humboldtiana, S. lasiandra, S. nigra, S. pentandra, S. purpurea, S. x rubens, S. viminalis) were included in the study. Based on substances known for their health promoting potential and characteristic for Salix (selected phenolic compounds including salicylates), a targeted metabolomics analysis and clustering of 92 generated Salix clones was performed revealing four different cluster/chemoprofiles. In more specific, one group is formed by S. daphnoides clones and inter- and intraspecific hybrids, a second group by S. viminalis clones and inter- and intraspecific hybrids, a third group generally formed by S. alba, S. pentandra, S. x rubens, and S. lasiandra clones and hybrids, and a fourth group by S. purpurea clones and inter- and intraspecific hybrids. Clustering on the basis of the selected phenolic compounds can be used for identifying Salix clones with a different compound profile. New combinations of secondary plant metabolites offer the chance to identify Salix crosses with improved effects on human health.


Author(s):  
Charles Oluwaseun Adetunji ◽  
Santwana Palai ◽  
Chika Precious Ekwuabu ◽  
Chukwuebuka Egbuna ◽  
Juliana Bunmi Adetunji ◽  
...  

2016 ◽  
pp. 135-168
Author(s):  
Tamoghna Saha ◽  
Nithya C. ◽  
Shyambabu S. ◽  
Kiran Kumari ◽  
S. N. Ray ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4263 ◽  
Author(s):  
Weber ◽  
Hammoud Mahdi ◽  
Jankuhn ◽  
Lipowicz ◽  
Vissiennon

The herbal preparation coffee charcoal is produced by over-roasting and milling green dried Coffea arabica L. seeds, and has a long-standing tradition in the treatment of inflammatory and gastrointestinal disorders. Its therapeutic properties are commonly attributed to adsorptive and astringent effects. This insufficiently explains its mode of action, especially when used in the treatment of inflammatory diseases in lower dosages. Our investigations aimed to identify bioactive secondary plant metabolites affecting cytokine-signaling. Thus, a phytochemical analysis of coffee charcoal extract was conducted using HPLC and LC/MS. Trigonelline, neochlorogenic acid, chlorogenic acid, caffeine, cryptochlorogenic acid, feruloylquinic acid isomers, and a caffeoylquinolacton were identified in the extract. Subsequently, the effects of coffee charcoal extract, chlorogenic acid isomers, their metabolite caffeic acid, caffeine, and trigonelline on cytokine (TNF, IL-6, MCP-1) release from LPS-challenged human THP-1 macrophages were examined to evaluate anti-inflammatory activity. Coffee charcoal showed concentration-dependent mild-to-medium inhibitory effects. The chlorogenic acid isomers and caffeic acid inhibited the TNF release, with cryptochlorogenic acid exerting the most distinct effects, as well as decreasing the release of IL-6 and MCP-1. In addition, scanning electron microscopic images provided an impression of the particle constitution, indicating a larger particle size and less structured surface of coffee charcoal in comparison to activated charcoal. In conclusion, our findings underline that beyond adsorptive effects, coffee charcoal exhibits pharmacological properties, which derive from a spectrum of secondary plant metabolites and support the therapeutic use in inflammatory diseases. Chlorogenic acids, particularly cryptochlorogenic acid, appear as pivotal bioactive compounds.


2018 ◽  
Vol 116 ◽  
pp. 298-306 ◽  
Author(s):  
Josephin Glück ◽  
Thorsten Buhrke ◽  
Falko Frenzel ◽  
Albert Braeuning ◽  
Alfonso Lampen

Sign in / Sign up

Export Citation Format

Share Document