scholarly journals Human Cell Modeling for Cardiovascular Diseases

2020 ◽  
Vol 21 (17) ◽  
pp. 6388
Author(s):  
Melania Lippi ◽  
Ilaria Stadiotti ◽  
Giulio Pompilio ◽  
Elena Sommariva

The availability of appropriate and reliable in vitro cell models recapitulating human cardiovascular diseases has been the aim of numerous researchers, in order to retrace pathologic phenotypes, elucidate molecular mechanisms, and discover therapies using simple and reproducible techniques. In the past years, several human cell types have been utilized for these goals, including heterologous systems, cardiovascular and non-cardiovascular primary cells, and embryonic stem cells. The introduction of induced pluripotent stem cells and their differentiation potential brought new prospects for large-scale cardiovascular experiments, bypassing ethical concerns of embryonic stem cells and providing an advanced tool for disease modeling, diagnosis, and therapy. Each model has its advantages and disadvantages in terms of accessibility, maintenance, throughput, physiological relevance, recapitulation of the disease. A higher level of complexity in diseases modeling has been achieved with multicellular co-cultures. Furthermore, the important progresses reached by bioengineering during the last years, together with the opportunities given by pluripotent stem cells, have allowed the generation of increasingly advanced in vitro three-dimensional tissue-like constructs mimicking in vivo physiology. This review provides an overview of the main cell models used in cardiovascular research, highlighting the pros and cons of each, and describing examples of practical applications in disease modeling.

2016 ◽  
Vol 4 (20) ◽  
pp. 3482-3489 ◽  
Author(s):  
Giuliana E. Salazar-Noratto ◽  
Frank P. Barry ◽  
Robert E. Guldberg

Disease-specific pluripotent stem cells can be derived through genetic manipulation of embryonic stem cells or by reprogramming somatic cells (induced pluripotent stem cells).


Author(s):  
Hao Xu ◽  
Liying Wu ◽  
Guojia Yuan ◽  
Xiaolu Liang ◽  
Xiaoguang Liu ◽  
...  

: Hepatic disease negatively impacts liver function and metabolism. Primary human hepatocytes are the gold standard for the prediction and successful treatment of liver disease. However, the sources of hepatocytes for drug toxicity testing and disease modeling are limited. To overcome this issue, pluripotent stem cells (PSCs) have emerged as an alternative strategy for liver disease therapy. Human PSCs, including embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) can self-renew and give rise to all cells of the body. Human PSCs are attractive cell sources for regenerative medicine, tissue engineering, drug discovery, and developmental studies. Several recent studies have shown that mesenchymal stem cells (MSCs) can also differentiate (or trans-differentiate) into hepatocytes. Differentiation of human PSCs and MSCs into functional hepatocyte-like cells (HLCs) opens new strategies to study genetic diseases, hepatotoxicity, infection of hepatotropic viruses, and analyze hepatic biology. Numerous in vitro and in vivo differentiation protocols have been established to obtain human PSCs/MSCs-derived HLCs and mimic their characteristics. It was recently discovered that microRNAs (miRNAs) play a critical role in controlling the ectopic expression of transcription factors and governing the hepatocyte differentiation of human PSCs and MSCs. In this review, we focused on the role of miRNAs in the differentiation of human PSCs and MSCs into hepatocytes.


2020 ◽  
Author(s):  
Jiaxing Wang ◽  
Ping Long ◽  
Shengnan Tian ◽  
Weihua Zu ◽  
Jing Liu ◽  
...  

Abstract Background Extravillous trophoblast (EVT) cells play an essential role in the maternal-fetal interaction. Although abnormal development and function of EVT cells, including impaired migration and invasion capability, are believed to be etiologically linked to severe pregnancy disorders including pre-eclampsia (PE), the associated molecular mechanisms are not clear ascribed to the lack of an appropriate cell model in vitro. Cyclosporine A (CsA) is a macrolide immunosuppressant and is also used in clinic to improve pregnancy outcomes. However, whether CsA has any effects on the function of EVT cells has not been well investigated. Methods In this study, we induced differentiation of human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) into EVT cells (hiPSC-EVT and hESC-EVT cells, respectively) by Y27632, NRG1, A83-01 and matrigel, and collected these derived EVT cells by flow cytometry for sorting cells positive for double HLA-G and KRT7, which are EVT markers. We then investigated the effects of CsA on the invasion and migration of these derived EVT cells. Results We found that the hiPSC-EVT and hESC-EVT cells expressed high levels of the EVT markers such as KRT7, ITGA5 and HLA-G but low levels of OCT4, a stem cell marker, and that CsA significantly promoted the invasion and migration of hiPSC-EVT and hESC-EVT cells. Conclusions We successfully generated hiPSC/hESC-derived human EVT cells, which may be applicable for investigating the remodeling process of spiral arteries remodeling and the possible mechanisms of EVT-related diseases in vitro. Furthermore, our findings provide direct evidence that CsA regulates the function of EVT cells and molecular basis by which CsA may be used to treat pregnancy complications in clinic associated with deficient EVT function.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Meike Hohwieler ◽  
Martin Müller ◽  
Pierre-Olivier Frappart ◽  
Sandra Heller

Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are characterized by their unique capacity to stepwise differentiate towards any particular cell type in an adult organism. Pluripotent stem cells provide a beneficial platform to model hereditary diseases and even cancer development. While the incidence of pancreatic diseases such as diabetes and pancreatitis is increasing, the understanding of the underlying pathogenesis of particular diseases remains limited. Only a few recent publications have contributed to the characterization of human pancreatic development in the fetal stage. Hence, most knowledge of pancreatic specification is based on murine embryology. Optimizing and understanding current in vitro protocols for pancreatic differentiation of ESCs and iPSCs constitutes a prerequisite to generate functional pancreatic cells for better disease modeling and drug discovery. Moreover, human pancreatic organoids derived from pluripotent stem cells, organ-restricted stem cells, and tumor samples provide a powerful technology to model carcinogenesis and hereditary diseases independent of genetically engineered mouse models. Herein, we summarize recent advances in directed differentiation of pancreatic organoids comprising endocrine cell types. Beyond that, we illustrate up-and-coming applications for organoid-based platforms.


2019 ◽  
Vol 20 (16) ◽  
pp. 3932 ◽  
Author(s):  
Barbara Świerczek-Lasek ◽  
Jacek Neska ◽  
Agata Kominek ◽  
Łukasz Tolak ◽  
Tomasz Czajkowski ◽  
...  

Pluripotent stem cells convert into skeletal muscle tissue during teratoma formation or chimeric animal development. Thus, they are characterized by naive myogenic potential. Numerous attempts have been made to develop protocols enabling efficient and safe conversion of pluripotent stem cells into functional myogenic cells in vitro. Despite significant progress in the field, generation of myogenic cells from pluripotent stem cells is still challenging—i.e., currently available methods require genetic modifications, animal-derived reagents, or are long lasting—and, therefore, should be further improved. In the current study, we investigated the influence of interleukin 4, a factor regulating inter alia migration and fusion of myogenic cells and necessary for proper skeletal muscle development and maintenance, on pluripotent stem cells. We assessed the impact of interleukin 4 on proliferation, selected gene expression, and ability to fuse in case of both undifferentiated and differentiating mouse embryonic stem cells. Our results revealed that interleukin 4 slightly improves fusion of pluripotent stem cells with myoblasts leading to the formation of hybrid myotubes. Moreover, it increases the level of early myogenic genes such as Mesogenin1, Pax3, and Pax7 in differentiating embryonic stem cells. Thus, interleukin 4 moderately enhances competence of mouse pluripotent stem cells for myogenic conversion.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Debora Salerno ◽  
Alessandro Rosa

Human pluripotent stem cells (PSCs), including embryonic stem cells and induced pluripotent stem cells, represent powerful tools for disease modeling and for therapeutic applications. PSCs are particularly useful for the study of development and diseases of the nervous system. However, generating in vitro models that recapitulate the architecture and the full variety of subtypes of cells that make the complexity of our brain remains a challenge. In order to fully exploit the potential of PSCs, advanced methods that facilitate the identification of molecular signatures in neural differentiation and neurological diseases are highly demanded. Here, we review the literature on the development and application of digital color-coded molecular barcoding as a potential tool for standardizing PSC research and applications in neuroscience. We will also describe relevant examples of the use of this technique for the characterization of the heterogeneous composition of the brain tumor glioblastoma multiforme.


Author(s):  
Eszter Posfai ◽  
John Paul Schell ◽  
Adrian Janiszewski ◽  
Isidora Rovic ◽  
Alexander Murray ◽  
...  

AbstractTotipotency is the ability of a single cell to give rise to all the differentiated cells that build the conceptus, yet how to capture this property in vitro remains incompletely understood. Defining totipotency relies upon a variety of assays of variable stringency. Here we describe criteria to define totipotency. We illustrate how distinct criteria of increasing stringency can be used to judge totipotency by evaluating candidate totipotent cell types in the mouse, including early blastomeres and expanded or extended pluripotent stem cells. Our data challenge the notion that expanded or extended pluripotent states harbor increased totipotent potential relative to conventional embryonic stem cells under in vivo conditions.


F1000Research ◽  
2014 ◽  
Vol 3 ◽  
pp. 196 ◽  
Author(s):  
Michael Telias ◽  
Menahem Segal ◽  
Dalit Ben-Yosef

In-vitro neuronal differentiation of human pluripotent stem cells has become a widely used tool in disease modeling and prospective regenerative medicine. Most studies evaluate neurons molecularly and only a handful of them use electrophysiological tools to directly indicate that these are genuine neurons. Therefore, the specific timing of development of intrinsic electrophysiological properties and synaptic capabilities remains poorly understood. Here we describe a systematic analysis of developing neurons derived in-vitro from human embryonic stem cells (hESCs). We show that hESCs differentiated in-vitro into early embryonic neurons, displaying basically mature morphological and electrical features as early as day 37. This early onset of action potential discharges suggests that first stages of neurogenesis in humans are already associated with electrical maturation. Spike frequency, amplitude, duration, threshold and after hyperpolarization were found to be the most predictive parameters for electrical maturity. Furthermore, we were able to detect spontaneous synaptic activity already at these early time-points, demonstrating that neuronal connectivity can develop concomitantly with the gradual process of electrical maturation. These results highlight the functional properties of hESCs in the process of their development into neurons. Moreover, our results provide practical tools for the direct measurement of functional maturity, which can be reproduced and implemented for stem cell research of neurogenesis in general, and neurodevelopmental disorders in particular.


Sign in / Sign up

Export Citation Format

Share Document