scholarly journals HisCoM-G×E: Hierarchical Structural Component Analysis of Gene-Based Gene–Environment Interactions

2020 ◽  
Vol 21 (18) ◽  
pp. 6724
Author(s):  
Sungkyoung Choi ◽  
Sungyoung Lee ◽  
Iksoo Huh ◽  
Heungsun Hwang ◽  
Taesung Park

Gene–environment interaction (G×E) studies are one of the most important solutions for understanding the “missing heritability” problem in genome-wide association studies (GWAS). Although many statistical methods have been proposed for detecting and identifying G×E, most employ single nucleotide polymorphism (SNP)-level analysis. In this study, we propose a new statistical method, Hierarchical structural CoMponent analysis of gene-based Gene–Environment interactions (HisCoM-G×E). HisCoM-G×E is based on the hierarchical structural relationship among all SNPs within a gene, and can accommodate all possible SNP-level effects into a single latent variable, by imposing a ridge penalty, and thus more efficiently takes into account the latent interaction term of G×E. The performance of the proposed method was evaluated in simulation studies, and we applied the proposed method to investigate gene–alcohol intake interactions affecting systolic blood pressure (SBP), using samples from the Korea Associated REsource (KARE) consortium data.

2011 ◽  
Vol 38 (3) ◽  
pp. 564-566 ◽  
Author(s):  
PROTON RAHMAN

Psoriasis and psoriatic arthritis (PsA) are heterogeneous diseases. While both have a strong genetic basis, it is strongest for PsA, where fewer investigators are studying its genetics. Over the last year the number of independent genetic loci associated with psoriasis has substantially increased, mostly due to completion of multiple genome-wide association studies (GWAS) in psoriasis. At least 2 GWAS efforts are now under way in PsA to identify novel genes in this disease; a metaanalysis of genome-wide scans and further studies must follow to examine the genetics of disease expression, epistatic interaction, and gene-environment interaction. In the long term, it is anticipated that genome-wide sequencing is likely to generate another wave of novel genes in PsA. At the annual meeting of the Group for Research and Assessment of Psoriasis and Psoriatic Arthritis (GRAPPA) in Stockholm, Sweden, in 2009, members discussed issues and challenges regarding the advancement of the genetics of PsA; results of those discussions are summarized here.


Author(s):  
Ren Zhou ◽  
Mengying Wang ◽  
Wenyong Li ◽  
Siyue Wang ◽  
Hongchen Zheng ◽  
...  

Non-syndromic cleft lip with or without cleft palate (NSCL/P) is one of common birth defects in China, with genetic and environmental components contributing to the etiology. Genome wide association studies (GWASs) have identified SPRY1 and SPRY2 to be associated with NSCL/P among Chinese populations. This study aimed to further explore potential genetic effect and gene—environment interaction among SPRY genes based on haplotype analysis, using 806 Chinese case—parent NSCL/P trios drawn from an international consortium which conducted a genome-wide association study. After the process of quality control, 190 single nucleotide polymorphisms (SNPs) of SPRY genes were included for analyses. Haplotype and haplotype—environment interaction analyses were conducted in Population-Based Association Test (PBAT) software. A 2-SNP haplotype and three 3-SNP haplotypes showed a significant association with the risk of NSCL/P after Bonferroni correction (corrected significance level = 2.6 × 10−4). Moreover, haplotype—environment interaction analysis identified these haplotypes respectively showing statistically significant interactions with maternal multivitamin supplementation or maternal environmental tobacco smoke. This study showed SPRY2 to be associated with NSCL/P among the Chinese population through not only gene effects, but also a gene—environment interaction, highlighting the importance of considering environmental exposures in the genetic etiological study of NSCL/P.


2018 ◽  
Vol 16 (06) ◽  
pp. 1840026 ◽  
Author(s):  
Sungkyoung Choi ◽  
Sungyoung Lee ◽  
Yongkang Kim ◽  
Heungsun Hwang ◽  
Taesung Park

Although genome-wide association studies (GWAS) have successfully identified thousands of single nucleotide polymorphisms (SNPs) associated with common diseases, these observations are limited for fully explaining “missing heritability”. Determining gene–gene interactions (GGI) are one possible avenue for addressing the missing heritability problem. While many statistical approaches have been proposed to detect GGI, most of these focus primarily on SNP-to-SNP interactions. While there are many advantages of gene-based GGI analyses, such as reducing the burden of multiple-testing correction, and increasing power by aggregating multiple causal signals across SNPs in specific genes, only a few methods are available. In this study, we proposed a new statistical approach for gene-based GGI analysis, “Hierarchical structural CoMponent analysis of Gene–Gene Interactions” (HisCoM-GGI). HisCoM-GGI is based on generalized structured component analysis, and can consider hierarchical structural relationships between genes and SNPs. For a pair of genes, HisCoM-GGI first effectively summarizes all possible pairwise SNP–SNP interactions into a latent variable, from which it then performs GGI analysis. HisCoM-GGI can evaluate both gene-level and SNP-level interactions. Through simulation studies, HisCoM-GGI demonstrated higher statistical power than existing gene-based GGI methods, in analyzing a GWAS of a Korean population for identifying GGI associated with body mass index. Resultantly, HisCoM-GGI successfully identified 14 potential GGI, two of which, (NCOR2 [Formula: see text] SPOCK1) and (LINGO2 [Formula: see text] ZNF385D) were successfully replicated in independent datasets. We conclude that HisCoM-GGI method may be a valuable tool for genome to identify GGI in missing heritability, allowing us to better understand the biological genetic mechanisms of complex traits. We conclude that HisCoM-GGI method may be a valuable tool for genome to identify GGI in missing heritability, allowing us to better understand biological genetic mechanisms of complex traits. An implementation of HisCoM-GGI can be downloaded from the website ( http://statgen.snu.ac.kr/software/hiscom-ggi ).


2021 ◽  
Vol 27 (3) ◽  
pp. 153-157
Author(s):  
Margit Burmeister ◽  
Srijan Sen

SUMMARYStress is the most important proximal precipitant of depression, yet most large genome-wide association studies (GWAS) do not include stress as a variable. Here, we review how gene × environment (G × E) interaction might impede the discovery of genetic factors, discuss two examples of G × E interaction in depression and addiction, studies incorporating high-stress environments, as well as upcoming waves of genome-wide environment interaction studies (GWEIS). We discuss recent studies which have shown that genetic distributions can be affected by social factors such as migrations and socioeconomic background. These distinctions are not just academic but have practical consequences. Owing to interaction with the environment, genetic predispositions to depression should not be viewed as unmodifiable destiny. Patients may genetically differ not just in their response to drugs, as in the now well-recognised field of pharmacogenetics, but also in how they react to stressful environments and how they are affected by behavioural therapies.


Author(s):  
Andrey Ziyatdinov ◽  
Jihye Kim ◽  
Dmitry Prokopenko ◽  
Florian Privé ◽  
Fabien Laporte ◽  
...  

Abstract The effective sample size (ESS) is a metric used to summarize in a single term the amount of correlation in a sample. It is of particular interest when predicting the statistical power of genome-wide association studies (GWAS) based on linear mixed models. Here, we introduce an analytical form of the ESS for mixed-model GWAS of quantitative traits and relate it to empirical estimators recently proposed. Using our framework, we derived approximations of the ESS for analyses of related and unrelated samples and for both marginal genetic and gene-environment interaction tests. We conducted simulations to validate our approximations and to provide a quantitative perspective on the statistical power of various scenarios, including power loss due to family relatedness and power gains due to conditioning on the polygenic signal. Our analyses also demonstrate that the power of gene-environment interaction GWAS in related individuals strongly depends on the family structure and exposure distribution. Finally, we performed a series of mixed-model GWAS on data from the UK Biobank and confirmed the simulation results. We notably found that the expected power drop due to family relatedness in the UK Biobank is negligible.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chao-Yu Guo ◽  
Reng-Hong Wang ◽  
Hsin-Chou Yang

AbstractAfter the genome-wide association studies (GWAS) era, whole-genome sequencing is highly engaged in identifying the association of complex traits with rare variations. A score-based variance-component test has been proposed to identify common and rare genetic variants associated with complex traits while quickly adjusting for covariates. Such kernel score statistic allows for familial dependencies and adjusts for random confounding effects. However, the etiology of complex traits may involve the effects of genetic and environmental factors and the complex interactions between genes and the environment. Therefore, in this research, a novel method is proposed to detect gene and gene-environment interactions in a complex family-based association study with various correlated structures. We also developed an R function for the Fast Gene-Environment Sequence Kernel Association Test (FGE-SKAT), which is freely available as supplementary material for easy GWAS implementation to unveil such family-based joint effects. Simulation studies confirmed the validity of the new strategy and the superior statistical power. The FGE-SKAT was applied to the whole genome sequence data provided by Genetic Analysis Workshop 18 (GAW18) and discovered concordant and discordant regions compared to the methods without considering gene by environment interactions.


Author(s):  
Mohamed Abdulkadir ◽  
Dongmei Yu ◽  
Lisa Osiecki ◽  
Robert A. King ◽  
Thomas V. Fernandez ◽  
...  

AbstractTourette syndrome (TS) is a neuropsychiatric disorder with involvement of genetic and environmental factors. We investigated genetic loci previously implicated in Tourette syndrome and associated disorders in interaction with pre- and perinatal adversity in relation to tic severity using a case-only (N = 518) design. We assessed 98 single-nucleotide polymorphisms (SNPs) selected from (I) top SNPs from genome-wide association studies (GWASs) of TS; (II) top SNPs from GWASs of obsessive–compulsive disorder (OCD), attention-deficit/hyperactivity disorder (ADHD), and autism spectrum disorder (ASD); (III) SNPs previously implicated in candidate-gene studies of TS; (IV) SNPs previously implicated in OCD or ASD; and (V) tagging SNPs in neurotransmitter-related candidate genes. Linear regression models were used to examine the main effects of the SNPs on tic severity, and the interaction effect of these SNPs with a cumulative pre- and perinatal adversity score. Replication was sought for SNPs that met the threshold of significance (after correcting for multiple testing) in a replication sample (N = 678). One SNP (rs7123010), previously implicated in a TS meta-analysis, was significantly related to higher tic severity. We found a gene–environment interaction for rs6539267, another top TS GWAS SNP. These findings were not independently replicated. Our study highlights the future potential of TS GWAS top hits in gene–environment studies.


Sign in / Sign up

Export Citation Format

Share Document