scholarly journals Protective Effects of Simvastatin on Endotoxin-Induced Acute Kidney Injury through Activation of Tubular Epithelial Cells’ Survival and Hindering Cytochrome C-Mediated Apoptosis

2020 ◽  
Vol 21 (19) ◽  
pp. 7236
Author(s):  
Lana Nežić ◽  
Ranko Škrbić ◽  
Ljiljana Amidžić ◽  
Radoslav Gajanin ◽  
Zoran Milovanović ◽  
...  

Increasing evidence suggests that apoptosis of tubular cells and renal inflammation mainly determine the outcome of sepsis-associated acute kidney injury (AKI). The study aim was to investigate the molecular mechanism involved in the renoprotective effects of simvastatin in endotoxin (lipopolysaccharide, LSP)-induced AKI. A sepsis model was established by intraperitoneal injection of a single non-lethal LPS dose after short-term simvastatin pretreatment. The severity of the inflammatory injury was expressed as renal damage scores (RDS). Apoptosis of tubular cells was detected by Terminal deoxynucleotidyl transferase-mediated dUTP Nick End Labeling (TUNEL assay) (apoptotic DNA fragmentation, expressed as an apoptotic index, AI) and immunohistochemical staining for cleaved caspase-3, cytochrome C, and anti-apoptotic Bcl-xL and survivin. We found that endotoxin induced severe renal inflammatory injury (RDS = 3.58 ± 0.50), whereas simvastatin dose-dependently prevented structural changes induced by LPS. Furthermore, simvastatin 40 mg/kg most profoundly attenuated tubular apoptosis, determined as a decrease of cytochrome C, caspase-3 expression, and AIs (p  <  0.01 vs. LPS). Conversely, simvastatin induced a significant increase of Bcl-XL and survivin, both in the strong inverse correlations with cleaved caspase-3 and cytochrome C. Our study indicates that simvastatin has cytoprotective effects against LPS-induced tubular apoptosis, seemingly mediated by upregulation of cell-survival molecules, such as Bcl-XL and survivin, and inhibition of the mitochondrial cytochrome C and downstream caspase-3 activation.

2020 ◽  
Vol 11 ◽  
Author(s):  
Shuo Huang ◽  
Yanyan Tang ◽  
Tianjun Liu ◽  
Ning Zhang ◽  
Xueyan Yang ◽  
...  

Many studies proposed that oxidative stress and apoptosis are key mechanisms in the pathogenesis of contrast-induced acute kidney injury (CI-AKI). Xylose-pyrogallol conjugate (XP) is an original effective antioxidant that showed decent antioxidant and anti-apoptosis effect before. Thus the therapeutic effect and mechanism of XP in preventing CI-AKI in the short and long term were investigated in this research. Renal function and histological grade were evaluated to determine the severity of renal injury. Kidney samples were then collected for the measurement of oxidative stress markers and the detection of apoptosis. Transmission electron microscopy (TEM) and western blot of mitochondrial protein were utilized for the analysis of the mitochondrial conditions. The results demonstrated that the CI-AKI rats caused a significant decrease in renal function accompanied by a remarkable increase in Malondialdehyde (MDA), bax, caspase-3, cytochrome c (Cyt C) level, TdT-mediated dUTP nick end labeling (TUNEL) positive apoptotic cells, and damaged mitochondria, while a decline in antioxidase activities and mitochondrial superoxide dismutase 2 (SOD2) expression compared with the control rats. However, when XP (50 or 100 or 200 mg/kg/day) was given orally for consecutive 7 days before CI-AKI modeling, XP (200 mg/kg) showed a better capability to restore renal dysfunction, histopathological appearance, the level of apoptosis, mitochondrial damage, oxidative stress, and fibrosis generation without interference in computed tomographic imaging. Our study indicated that antioxidant XP played a nephroprotective role probably via antiapoptotic and antioxidant mechanisms. Besides, XP may regulate the mitochondria pathway via decreasing the ratio of bax/bcl-2, inhibiting caspase-3 expression, cytochrome c release, and superoxide dismutase 2 activity. Overall, XP as a high-efficient antioxidant may have the potentials to prevent CI-AKI.


2020 ◽  
Vol 21 (7) ◽  
pp. 2519
Author(s):  
Yuji Nozaki ◽  
Jinhai Ri ◽  
Kenji Sakai ◽  
Kaoru Niki ◽  
Masanori Funauchi ◽  
...  

Thrombomodulin (TM) is a single transmembrane, multidomain glycoprotein receptor for thrombin, and is best known for its role as a cofactor in a clinically important natural anticoagulant pathway. In addition to its anticoagulant function, TM has well-defined anti-inflammatory properties. Soluble TM levels increase significantly in the plasma of septic patients; however, the possible involvement of recombinant human soluble TM (rTM) transduction in the pathogenesis of lipopolysaccharide (LPS)-induced nephrotoxicity, including acute kidney injury (AKI), has remained unclear. Mice were injected intraperitoneally with 15 mg/kg LPS. rTM (3 mg/kg) or saline was administered to the animals before the 3 and 24 h LPS-injection. At 24 and 48 h, blood urea nitrogen, the inflammatory cytokines in sera and kidney, and histological findings were assessed. Cell activation and apoptosis signal was assessed by Western blot analysis. In this study using a mouse model of LPS-induced AKI, we found that rTM attenuated renal damage by reducing both cytokine and cell activation and apoptosis signals with the accumulation of CD4+ T-cells, CD11c+ cells, and F4/80+ cells via phospho c-Jun activations and Bax expression. These findings suggest that the mechanism underlying these effects of TM may be mediated by a reduction in inflammatory cytokine production in response to LPS. These molecules might thereby provide a new therapeutic strategy in the context of AKI with sepsis.


2013 ◽  
Vol 305 (7) ◽  
pp. F1064-F1073 ◽  
Author(s):  
Nanmei Liu ◽  
Andreas Patzak ◽  
Jinyuan Zhang

Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) can repair acute kidney injury (AKI), but with limited effect. We test the hypothesis that CXCR4 overexpression improves the repair ability of BMSCs and that this is related to increased homing of BMSCs and increased release of cytokines. Hypoxia/reoxygenation-pretreated renal tubular epithelial cells (HR-RTECs) were used. BMSCs, null-BMSCs, and CXCR4-BMSCs were cocultured with HR-RTECs. The number of migrating BMSCs was counted. Proliferating cell nuclear antigen (PCNA) expression, cell death, and expressions of cleaved caspase-3 and Bcl-2 in cocultured HR-RTECs were measured. Cytokeratin 18 (CK18) expression and cytokine secretions of the BMSCs cultured with HR-RTEC supernatant were detected. BMSC homing, renal function, proliferation, and cell death of tubular cells were assayed in the AKI mouse model. CXCR4-BMSCs showed a remarkable expression of CXCR4. Stromal cell-derived factor-1 in the HR-RTEC supernatant was increased. Migration of BMSCs was CXCR4-dependent. Proportions of CK18+ cells in BMSCs, null-BMSCs, and CXCR4-BMSCs showed no difference. However, CXCR4 overexpression in BMSCs stimulated secretion of bone morphogenetic protein-7, hepatocyte growth factor, and interleukin 10. The neutralizing anti-CXCR4 antibody AMD3100 abolished this. In cocultured HR-RTECs the proportions of PCNA+ cells and Bcl-2 expression were enhanced; however, the proportion of annexin V+ cells and expression of cleaved caspase-3 were reduced. The in vivo study showed increased homing of CXCR4-BMSCs in kidneys, which was associated with improved renal function, reduced acute tubular necrosis scoring, accelerated mitogenic response of tubular cells, and reduced tubular cell death. The enhanced homing and paracrine actions of BMSCs with CXCR4 overexpression suggest beneficial effects of such cells in BMSC-based therapy for AKI.


2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
Li-Peng Guo ◽  
Si-Xu Liu ◽  
Qin Yang ◽  
Hong-Yang Liu ◽  
Lu-Lu Xu ◽  
...  

Acute kidney injury (AKI) is a common complication of sepsis and has also been observed in some patients suffering from the new coronavirus pneumonia COVID-19, which is currently a major global concern. Thymoquinone (TQ) is one of the most active ingredients in Nigella sativa seeds. It has a variety of beneficial properties including anti-inflammatory and antioxidative activities. Here, we investigated the possible protective effects of TQ against kidney damage in septic BALB/c mice. Eight-week-old male BALB/c mice were divided into four groups: control, TQ, cecal ligation and puncture (CLP), and TQ+CLP. CLP was performed after 2 weeks of TQ gavage. After 48 h, we measured the histopathological alterations in the kidney tissue and the serum levels of creatinine (CRE) and blood urea nitrogen (BUN). We also evaluated pyroptosis (NLRP3, caspase-1), apoptosis (caspase-3, caspase-8), proinflammatory (TNF-α, IL-1β, and IL-6)-related protein and gene expression levels. Our results demonstrated that TQ inhibited CLP-induced increased serum CRE and BUN levels. It also significantly inhibited the high levels of NLRP3, caspase-1, caspase-3, caspase-8, TNF-α, IL-1β, and IL-6 induced by CLP. Furthermore, NF-κB protein level was significantly decreased in the TQ+CLP group than in the CLP group. Together, our results indicate that TQ may be a potential therapeutic agent for sepsis-induced AKI.


2011 ◽  
Vol 301 (1) ◽  
pp. F162-F170 ◽  
Author(s):  
Qingqing Wei ◽  
William D. Hill ◽  
Yunchao Su ◽  
Shuang Huang ◽  
Zheng Dong

Granulocyte colony-stimulating factor (G-CSF) is renoprotective during acute kidney injury (AKI) induced by ischemia and cisplatin nephrotoxicity; however, the underlying mechanism is not entirely clear. Rhabdomyolysis is another important clinical cause of AKI, due to the release of nephrotoxins (e.g., heme) from disrupted muscles. The current study has determined the effects of G-CSF on rhabdomyolysis-associated AKI using in vivo and in vitro models. In C57BL/6 mice, intramuscular injection of glycerol induced AKI, which was partially prevented by G-CSF pretreatment. Consistently, glycerol-induced renal tissue damage was ameliorated by G-CSF. In addition, animal survival following the glycerol injection was improved from ∼30 to ∼70% by G-CSF. In cultured renal tubular cells, hemin-induced apoptosis was also suppressed by G-CSF. Interestingly, G-CSF induced heme oxygenase-1 (HO-1, a critical enzyme for heme/hemin degradation and detoxification) in both cultured tubular cells and mouse kidneys. Blockade of HO-1 with protoporphyrin IX zinc(II) (ZnPP) could largely diminish the protective effects of G-CSF. Together, these results demonstrated the renoprotective effects of G-CSF in rhabdomyolysis-associated AKI. Notably, G-CSF may directly protect against tubular cell injury under the disease condition by inducing HO-1.


2018 ◽  
Vol 132 (7) ◽  
pp. 825-838 ◽  
Author(s):  
Yunwen Yang ◽  
Xiaowen Yu ◽  
Yue Zhang ◽  
Guixia Ding ◽  
Chunhua Zhu ◽  
...  

Renal hypoxia occurs in acute kidney injury (AKI) of various etiologies. Activation of hypoxia-inducible transcription factor (HIF) has been identified as an important mechanism of cellular adaptation to low oxygen. Preconditional HIF activation protects against AKI, suggesting a new approach in AKI treatment. HIF is degraded under normoxic conditions mediated by oxygen-dependent hydroxylation of specific prolyl residues of the regulative α-subunits by HIF prolyl hydroxylases (PHD). FG-4592 is a novel, orally active, small-molecule HIF PHD inhibitor for the treatment of anemia in patients with chronic kidney disease (CKD). The current study aimed to evaluate the effect of FG-4592 (Roxadustat) on cis-diamminedichloroplatinum (cisplatin)-induced kidney injury. In mice, pretreatment with FG-4592 markedly ameliorated cisplatin-induced kidney injury as shown by the improved renal function (blood urea nitrogen (BUN), serum creatinine (Scr), and cystatin C) and kidney morphology (periodic acid-Schiff (PAS) staining) in line with a robust blockade of renal tubular injury markers of kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL). Meanwhile, the renal apoptosis and inflammation induced by cisplatin were also strikingly attenuated in FG-4592-treated mice. Along with the protective effects shown above, FG-4592 pretreatment strongly enhanced HIF-1α in tubular cells, as well as the expressions of HIF target genes. FG-4592 alone did not affect the renal function and morphology in mice. In vitro, FG-4592 treatment significantly up-regulated HIF-1α and protected the tubular cells against cisplatin-induced apoptosis. In summary, FG-4592 treatment remarkably ameliorated the cisplatin-induced kidney injury possibly through the stabilization of HIF. Thus, besides the role in treating CKD anemia, the clinical use of FG-4592 also could be extended to AKI.


2020 ◽  
Vol 40 (2) ◽  
Author(s):  
Fei Chen ◽  
Jingchao Lu ◽  
Xiuchun Yang ◽  
Bing Xiao ◽  
Huiqiang Chen ◽  
...  

Abstract Contrast-induced acute kidney injury (CI-AKI) is a severe complication caused by intravascular applied radial contrast media (CM). Pyroptosis is a lytic type of cell death inherently associated with inflammation response and the secretion of pro-inflammatory cytokines following caspase-1 activation. The aim of the present study was to investigate the protective effects of acetylbritannilactone (ABL) on iopromide (IOP)-induced acute renal failure and reveal the underlying mechanism. In vivo and in vitro, IOP treatment caused renal damage and elevated the caspase-1 (+) propidium iodide (PI) (+) cell count, interleukin (IL)-1β and IL-18 levels, lactate dehydrogenase (LDH) release, and the relative expression of nucleotide-binding domain, leucine-rich repeat containing protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), and gasdermin D (GSDMD), suggesting that IOP induces AKI via the activation of pyroptosis. Furthermore, the pretreatment of ABL partly mitigated the CI-AKI, development of pyroptosis, and subsequent kidney inflammation. These data revealed that ABL partially prevents renal dysfunction and reduces pyroptosis in CI-AKI, which may provide a therapeutic target for the treatment of CM-induced AKI.


2019 ◽  
Vol 19 (9) ◽  
pp. 673-682 ◽  
Author(s):  
Panpan Chang ◽  
Yuzi Tian ◽  
Aaron M. Williams ◽  
Umar F. Bhatti ◽  
Baoling Liu ◽  
...  

Background: Histone deacetylase (HDAC) 6 inhibitors have demonstrated significant protective effects in traumatic injuries. However, their roles in neuroprotection and underlying mechanisms are poorly understood. This study sought to investigate the neuroprotective effects of Tubastatin A (Tub-A), an HDAC6 inhibitor, during oxygenglucose deprivation (OGD) in HT22 hippocampal cells. Methods: HT22 hippocampal cells were exposed to OGD. Cell viability and cytotoxicity were assessed by cell counting kit-8 (CCK-8) and lactate dehydrogenase (LDH) release assay. Cellular apoptosis was assessed by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Mitochondria membrane potential was detected using JC-1 dye. Expressions of acetylated α-tubulin, α-tubulin, cytochrome c, VDAC, Bax, Bcl- 2, cleaved caspase 3, phosphorylated Akt, Akt, phosphorylated GSK3β and GSK3β were analyzed by Western blot analysis. Results: Tub-A induced acetylation of α-tubulin, demonstrating appropriate efficacy. Tub-A significantly increased cell viability and attenuated LDH release after exposure to OGD. Furthermore, Tub-A treatment blunted the increase in TUNEL-positive cells following OGD and preserved the mitochondrial membrane potential. Tub-A also attenuated the release of cytochrome c from the mitochondria into the cytoplasm and suppressed the ratio of Bax/Bcl-2 and cleaved caspase 3. This was mediated, in part, by the increased phosphorylation of Akt and GSK3β signaling pathways. Conclusion: HDAC 6 inhibition, using Tub-A, protects against OGD-induced injury in HT22 cells by modulating Akt/GSK3β signaling and inhibiting mitochondria-mediated apoptosis.


Sign in / Sign up

Export Citation Format

Share Document