scholarly journals TMPE Derived from Saffron Natural Monoterpene as Cytotoxic and Multidrug Resistance Reversing Agent in Colon Cancer Cells

2020 ◽  
Vol 21 (20) ◽  
pp. 7529
Author(s):  
Kamila Środa-Pomianek ◽  
Anna Palko-Łabuz ◽  
Andrzej Poła ◽  
Mirosława Ferens-Sieczkowska ◽  
Olga Wesołowska ◽  
...  

Terpenes constitute one of the largest groups of natural products. They exhibit a wide range of biological activities including antioxidant, anticancer, and drug resistance modulating properties. Saffron extract and its terpene constituents have been demonstrated to be cytotoxic against various types of cancer cells, including breast, liver, lung, pancreatic, and colorectal cancer. In the present work, we have studied anticancer properties of TMPE, a newly synthesized monoterpene derivative of β-cyclocitral—the main volatile produced by the stigmas of unripe crocuses. TMPE presented selective cytotoxic activity to doxorubicin-resistant colon cancer cells and was identified to be an effective MDR modulator in doxorubicin-resistant cancer cells. Synergy between this derivative and doxorubicin was observed. Most probably, TMPE inhibited transport activity of ABCB1 protein without affecting its expression level. Analysis of TMPE physicochemical parameters suggested it was not likely to be transported by ABCB1. Molecular modeling showed TMPE being more reactive molecule than the parental compound—β-cyclocitral. Analysis of electrostatic potential maps of both compounds prompted us to hypothesize that reduced reactivity as well as susceptibility to electrophilic attack were related to the lower general toxicity of β-cyclocitral. All of the above pointed to TMPE as an interesting candidate molecule for MDR reversal in cancer cells.

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 369
Author(s):  
Joanna Wawszczyk ◽  
Katarzyna Jesse ◽  
Sławomir Smolik ◽  
Małgorzata Kapral

Pterostilbene is a dietary phytochemical that has been found to possess several biological activities, such as antioxidant and anti-inflammatory. Recent studies have shown that it exhibits the hallmark characteristics of an anticancer agent. The aim of the study was to investigate the anticancer activity of pterostilbene against HT-29 human colon cancer cells, focusing on its influence on cell growth, differentiation, and the ability of this stilbene to induce cell death. To clarify the mechanism of pterostilbene activity against colon cancer cells, changes in the expression of several genes and proteins that are directly related to cell proliferation, signal transduction pathways, apoptosis, and autophagy were also evaluated. Cell growth and proliferation of cells exposed to pterostilbene (5–100 µM) were determined by SRB and BRDU assays. Flow cytometric analyses were used for cell cycle progression. Further molecular investigations were performed using quantitative real-time RT-PCR. The expression of the signaling proteins studied was determined by the ELISA method. The results revealed that pterostilbene inhibited proliferation and induced the death of HT-29 colon cancer cells. Pterostilbene, depending on concentration, caused inhibition of proliferation, G1 cell arrest, and/or triggered apoptosis in HT-29 cells. These effects were mediated by the down-regulation of the STAT3 and AKT kinase pathways. It may be concluded that pterostilbene could be considered as a potential therapeutic option in the treatment of colon cancer in the future.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Manuel Valenzuela ◽  
Lorena Bastias ◽  
Iván Montenegro ◽  
Enrique Werner ◽  
Alejandro Madrid ◽  
...  

Antioxidants are known to be beneficial to health. This paper evaluates the potential chemopreventive and anticancer properties of phenolic compounds present in grape juice extracts (GJE) from Autumn Royal and Ribier varieties. The effects of these GJE on viability (SRB day assay) and metastatic potential (migration and invasion parameters) of colon cancer cell lines HT-29 and SW-480 were evaluated. The effects of GJE on two matrix metalloproteinase gene expressions (MMP2 and MMP9) were also evaluated via qRT-PCR. In the former, GJE reduced cell viability in both cell lines in a dose-dependent manner. GJE treatment also reduced cell migration and invasion. Moreover, MMP-2 and MMP-9 gene expression diminished depending on extract and on cell type.Conclusions. These results provide novel information concerning anticancer properties of selected GJE by revealing selective cytotoxicity and the ability to reduce invasiveness of colon cancer cells.


2019 ◽  
Vol 10 (5) ◽  
pp. 2739-2751 ◽  
Author(s):  
Marta K. Lemieszek ◽  
Patrícia S. Marques ◽  
Miguel Ribeiro ◽  
Daniela Ferreira ◽  
Guilhermina Marques ◽  
...  

Screening aimed at the evaluation of the presence of small RNAs with anticancer properties in Boletus spretus, B. pinophilus and Cantharellus cibarius, was conducted.


2012 ◽  
Vol 31 (1) ◽  
pp. 70-77 ◽  
Author(s):  
Jun Sik Lee ◽  
Won-Kyo Jung ◽  
Myung Ho Jeong ◽  
Taek Rim Yoon ◽  
Hyung Keun Kim

Sanguinarine is an alkaloid obtained from the bloodroot plant Sanguinaria canadensis and has beneficial effects on oxidative stress and inflammatory disorders. Previous reports have demonstrated that sanguinarine also exhibit anticancer properties. In the current study, we investigated the effects of sanguinarine on HT-29 human colon cancer cells. It was observed that sanguinarine treatment induces a dose-dependent increase in apoptosis of human colon cancer cells. We also investigated the effects of sanguinarine on the expression of apoptosis-associated proteins, and the results revealed that there was an increase in Bax and a decrease in B-cell lymphoma 2 (Bcl-2) protein levels. Moreover, sanguinarine treatment significantly increases the activation of caspases 3 and 9 that are the key executioners in apoptosis. Our results suggest that sanguinarine induces apoptosis of HT-29 human colon cancer cells and may have a potential therapeutic use in the treatment of human colon cancer.


2020 ◽  
Author(s):  
Dongxiao Jiang ◽  
Shufei Ding ◽  
Zhujun Mao ◽  
Liyan You ◽  
yeping ruan

Abstract Background: Colon cancer is a malignant gastrointestinal tumor with a high incidence, high mortality and high metastasis in the world. Aloe-emodin is a monomer compound derived from hydroxyanthraquinone. It makes a wide range of anti-tumor effects and exists in Rhubarb, Aloe, and other plants. However, the mechanism of aloe-emodin against colon cancer still not clear. Here, we predict the potential targets and mechanisms of aloe-emodin based on network pharmacology analysis. Methods: First, determine the intersection target of aloe-emodin and colon cancer, analyze and construct PPI, Gene Ontology, and KEGG pathway analysis. In addition, we selected apoptosis pathways for experimental verification including cell viability determination, cell proliferation, caspase-3 activity determination, DAPI staining, cell cycle determination and western blot to evaluate the apoptosis effect of aloe-emodin on colon cancer cells.Results: The MTT assay and cell colony experiment showed that AE inhibited cell proliferation (P<0.01). DAPI staining confirmed that AE induced apoptosis. AE activates caspase-3, caspase-9 and Bax and down-regulates the expression of Bcl-2. Furthermore, the expression level of cytochrome C protein increased in a time-dependent manner in the cytoplasm but fell in a time-dependent manner in the mitochondria.Conclusion: These results indicate that aloe-emodin may induce apoptosis of human colon cancer cells through mitochondrial related pathways.


Author(s):  
Antara Banerjee ◽  
Surajit Pathak ◽  
Ganesan Jothimani ◽  
Susmita Roy

AbstractBackgroundColorectal cancer (CRC) is the third most prevalent form of cancer and fourth leading cause of morbidity worldwide. Surgical resection remains the only curative approach for CRC, but recurrence following surgery is the main problem and ultimate cause of death. Lycopodium clavatum and quercetin have been found to exert its anticancer properties. The aim of the present study is to investigate whether quercetin or L. clavatum extract and combination of both have any profound role in reducing major inflammatory cytokines in Colo-320 cells.MethodsL. clavatum and Quercetin alone or in combination was administered to colon cancer cells and various toxicity markers, gene expression analyses of apototic genes and gelatin zymmography were performed.ResultsQuercetin (50 μm) in combination with L. clavatum extract (10 μL) distinctly reduced cell growth and highlighted their potential effects in extirpation of colon cancer cells. Treatment with increased dose of L. clavatum extract in combination with quercetin reduced the colony size and proliferation potential when compared to the sole treatment of plant extracts. In the antimicrobial assays, it was observed that Lycopodium alone exhibited antimicrobial activity against Escherichia coli and Pseudomonas aeruginosa. Characterization of L. clavatum extract and quercetin was performed and confirmed the presence of flavonoids and alkaloids. Treatment with Lycopodium and quercetin combination induced significant down-regulation in activities of MMP2 and MMP9 tested by gelatin zymography. The combined treatment greatly affected the mRNA expression of p53, Bcl2, Bax, Caspase 3, Wnt 1, Cyclin D1, and Catalase genes in colon cancer cells.ConclusionThe synergistic effect between Lycopodium and quercetin might bring forward the enhanced antitumorigenic properties of combinational therapy with natural products to successfully combat the cancer progression with minimal side effects and resistance to drugs.


Sign in / Sign up

Export Citation Format

Share Document