scholarly journals Complementary Transcriptome and Proteome Analyses Provide Insight into the Floral Transition in Bamboo (Dendrocalamus latiflorus Munro)

2020 ◽  
Vol 21 (22) ◽  
pp. 8430
Author(s):  
Xiaoyan Wang ◽  
Yujiao Wang ◽  
Guoqian Yang ◽  
Lei Zhao ◽  
Xuemei Zhang ◽  
...  

Most woody bamboos bloom only once after long vegetative growth phases and die immediately afterwards. It is difficult, however, to determine the timing of the floral transition, as little information is available on the molecular mechanism of plant maturity in bamboos. To uncover the bamboo floral transition mechanism, its morpho-physiological characteristics, transcriptomes and large-scale quantitative proteomes were investigated in leaves which were collected at different stages during floral transition in a woody bamboo, Dendrocalamus latiflorus. We identified many flowering time-associated genes and the continued increase and decrease genes were screened as flowering biomarker genes (e.g., the MADS14 and bHLH13 genes). These different genes were assigned to specific metabolic pathways by the Kyoto Encyclopedia of Genes and Genomes (KEGG). And the photoperiod pathways depending on the circadian rhythm may play an essential role in the bamboo floral transition. In addition, a total of 721 differently expressed proteins of leaves from the vegetative-to-reproductive stages were identified. Fifty-five genes were specifically differentially expressed at both the transcriptomic and proteomic levels, including genes related to photosynthesis and nucleotide sugar, which may be involved in the floral transition. This work provides insights into bamboo flowers and the management of forest breeding.

2020 ◽  
Author(s):  
Xiaoyan Wang ◽  
Yujiao Wang ◽  
Guoqian Yang ◽  
Lei Zhao ◽  
Dezhu Li ◽  
...  

Abstract Background Most woody bamboos flower only once after long vegetable growth phases and die immediately afterward. It is difficult to know the timing of the floral transition, as little information is available on the molecular mechanism of plant maturity in bamboos. Results In this study, through RNA sequencing of leaves of D. latiflorus during floral transition and de novo assembly, a final set of 155,494 unigenes were obtained with N50 of 2,069 bp. We identified a lot of flowering time-associated and flowering integration genes and the continued increase and decrease genes were screened as flowering biomarker genes, such as MADS14, bHLH13, ABA-related genes. The different genes were assigned to specific metabolic pathways by Kyoto Encyclopedia of Genes and Genomes (KEGG) and the photoperiod pathways depending on the circadian rhythm may play an essential role in the bamboo floral transition. In addition, a total of 721 different expressed proteins of leaves from the vegetable-to-reproductive stages in the same flowering clumps were identified using iTRAQ technique. The correlations between the expression levels of a transcript and the abundance of its corresponding protein were observed infrequently, but the very strong correlation in the specific metabolic process was observed, such as carbon metabolism, sugar metabolism, and photosynthesis, underlining the importance of these metabolic pathways during floral transition. Conclusions In this report, we combined transcriptome with large-scale quantitative proteomes to investigate the flower transition of D. latiflorus. This work will provide insights into mechanism of floral transition for bamboos, and management of forest breeding.


Metabolites ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 336
Author(s):  
Boštjan Murovec ◽  
Leon Deutsch ◽  
Blaž Stres

General Unified Microbiome Profiling Pipeline (GUMPP) was developed for large scale, streamlined and reproducible analysis of bacterial 16S rRNA data and prediction of microbial metagenomes, enzymatic reactions and metabolic pathways from amplicon data. GUMPP workflow introduces reproducible data analyses at each of the three levels of resolution (genus; operational taxonomic units (OTUs); amplicon sequence variants (ASVs)). The ability to support reproducible analyses enables production of datasets that ultimately identify the biochemical pathways characteristic of disease pathology. These datasets coupled to biostatistics and mathematical approaches of machine learning can play a significant role in extraction of truly significant and meaningful information from a wide set of 16S rRNA datasets. The adoption of GUMPP in the gut-microbiota related research enables focusing on the generation of novel biomarkers that can lead to the development of mechanistic hypotheses applicable to the development of novel therapies in personalized medicine.


2021 ◽  
Vol 10 (7) ◽  
pp. 432
Author(s):  
Nicolai Moos ◽  
Carsten Juergens ◽  
Andreas P. Redecker

This paper describes a methodological approach that is able to analyse socio-demographic and -economic data in large-scale spatial detail. Based on the two variables, population density and annual income, one investigates the spatial relationship of these variables to identify locations of imbalance or disparities assisted by bivariate choropleth maps. The aim is to gain a deeper insight into spatial components of socioeconomic nexuses, such as the relationships between the two variables, especially for high-resolution spatial units. The used methodology is able to assist political decision-making, target group advertising in the field of geo-marketing and for the site searches of new shop locations, as well as further socioeconomic research and urban planning. The developed methodology was tested in a national case study in Germany and is easily transferrable to other countries with comparable datasets. The analysis was carried out utilising data about population density and average annual income linked to spatially referenced polygons of postal codes. These were disaggregated initially via a readapted three-class dasymetric mapping approach and allocated to large-scale city block polygons. Univariate and bivariate choropleth maps generated from the resulting datasets were then used to identify and compare spatial economic disparities for a study area in North Rhine-Westphalia (NRW), Germany. Subsequently, based on these variables, a multivariate clustering approach was conducted for a demonstration area in Dortmund. In the result, it was obvious that the spatially disaggregated data allow more detailed insight into spatial patterns of socioeconomic attributes than the coarser data related to postal code polygons.


A numerical study on the transition from laminar to turbulent of two-dimensional fuel jet flames developed in a co-flowing air stream was made by adopting the flame surface model of infinite chemical reaction rate and unit Lewis number. The time dependent compressible Navier–Stokes equation was solved numerically with the equation for coupling function by using a finite difference method. The temperature-dependence of viscosity and diffusion coefficient were taken into account so as to study effects of increases of these coefficients on the transition. The numerical calculation was done for the case when methane is injected into a co-flowing air stream with variable injection Reynolds number up to 2500. When the Reynolds number was smaller than 1000 the flame, as well as the flow, remained laminar in the calculated domain. As the Reynolds number was increased above this value, a transition point appeared along the flame, downstream of which the flame and flow began to fluctuate. Two kinds of fluctuations were observed, a small scale fluctuation near the jet axis and a large scale fluctuation outside the flame surface, both of the same origin, due to the Kelvin–Helmholtz instability. The radial distributions of density and transport coefficients were found to play dominant roles in this instability, and hence in the transition mechanism. The decreased density in the flame accelerated the instability, while the increase in viscosity had a stabilizing effect. However, the most important effect was the increase in diffusion coefficient. The increase shifted the flame surface, where the large density decrease occurs, outside the shear layer of the jet and produced a thick viscous layer surrounding the jet which effectively suppressed the instability.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Matthew T. Bryan ◽  
Elizabeth L. Martin ◽  
Aleksandra Pac ◽  
Andrew D. Gilbert ◽  
Feodor Y. Ogrin

AbstractBiological cilia generate fluid movement within viscosity-dominated environments using beating motions that break time-reversal symmetry. This creates a metachronal wave, which enhances flow efficiency. Artificially mimicking this behaviour could improve microfluidic point-of-care devices, since viscosity-dominated fluid dynamics impede fluid flow and mixing of reagents, limiting potential for multiplexing diagnostic tests. However, current biomimicry schemes require either variation in the hydrodynamic response across a cilia array or a complex magnetic anisotropy configuration to synchronise the actuation sequence with the driving field. Here, we show that simple modifications to the structural design introduce phase differences between individual actuators, leading to the spontaneous formation of metachronal waves. This generates flow speeds of up to 16 μm/s as far as 675 μm above the actuator plane. By introducing metachronal waves through lithographic structuring, large scale manufacture becomes feasible. Additionally, by demonstrating that metachronal waves emerge from non-uniformity in internal structural mechanics, we offer fresh insight into the mechanics of cilia coordination.


This is the first occasion on which I have had the great honour of addressing the Royal Society on this anniversary of its foundation. According to custom, I begin with brief mention of those whom death has taken from our Fellowship during the past year, and whose memories we honour. Alfred Young (1873-1940), distinguished for his contributions to pure mathematics, was half brother to another of our Fellows, Sydney Young, a chemist of eminence. Alfred Young had an insight into the symbolic structure and manipulation of algebra, which gave him a special place among his mathematical contemporaries. After a successful career at Cambridge he entered the Church, and passed his later years in the country rectory of Birdbrook, Essex. His devotion to mathematics continued, however, throughout his life, and he published a steady stream of work in the branch of algebra which he had invented, and named ‘quantitative substitutional analysis’. He lived to see his methods adopted by Weyl in his quantum mechanics and spectroscopy. He was elected to our Fellowship in 1934. With the death of Miles Walker (1868-1941) the Society loses a pioneer in large-scale electrical engineering. Walker was a man of wide interests. He was trained first for the law, and even followed its practice for a period. Later he studied electrical engineering under Sylvanus Thompson at the Finsbury Technical College and became his assistant for several years. Thereafter, encouraged by Thompson, he entered St John’s College, Cambridge, with a scholarship, and graduated with 1st Class Honours in both the Natural Sciences and the Engineering Tripos. Having entered the service of the British Westinghouse Company, he was sent by them to the United States of America to study electrical engineering with the parent company in Pittsburgh. On his return to England he became their leading designer of high-speed electrical generators


2007 ◽  
Vol 98 (4) ◽  
pp. 2089-2098 ◽  
Author(s):  
Sean P. MacEvoy ◽  
Russell A. Epstein

Complex visual scenes preferentially activate several areas of the human brain, including the parahippocampal place area (PPA), the retrosplenial complex (RSC), and the transverse occipital sulcus (TOS). The sensitivity of neurons in these regions to the retinal position of stimuli is unknown, but could provide insight into their roles in scene perception and navigation. To address this issue, we used functional magnetic resonance imaging (fMRI) to measure neural responses evoked by sequences of scenes and objects confined to either the left or right visual hemifields. We also measured the level of adaptation produced when stimuli were either presented first in one hemifield and then repeated in the opposite hemifield or repeated in the same hemifield. Although overall responses in the PPA, RSC, and TOS tended to be higher for contralateral stimuli than for ipsilateral stimuli, all three regions exhibited position-invariant adaptation, insofar as the magnitude of adaptation did not depend on whether stimuli were repeated in the same or opposite hemifields. In contrast, object-selective regions showed significantly greater adaptation when objects were repeated in the same hemifield. These results suggest that neuronal receptive fields (RFs) in scene-selective regions span the vertical meridian, whereas RFs in object-selective regions do not. The PPA, RSC, and TOS may support scene perception and navigation by maintaining stable representations of large-scale features of the visual environment that are insensitive to the shifts in retinal stimulation that occur frequently during natural vision.


Sign in / Sign up

Export Citation Format

Share Document