scholarly journals Ovule Development and in Planta Transformation of Paphiopedilum Maudiae by Agrobacterium-Mediated Ovary-Injection

2020 ◽  
Vol 22 (1) ◽  
pp. 84
Author(s):  
Bai-Xue Luo ◽  
Li Zhang ◽  
Feng Zheng ◽  
Kun-Lin Wu ◽  
Lin Li ◽  
...  

In this paper, the development of the Paphiopedilum Maudiae embryo sac at different developmental stages after pollination was assessed by confocal laser scanning microscopy. The mature seeds of P. Maudiae consisted of an exopleura and a spherical embryo, but without an endosperm, while the inner integument cells were absorbed by the developing embryo. The P. Maudiae embryo sac exhibited an Allium type of development. The time taken for the embryo to develop to a mature sac was 45-50 days after pollination (DAP) and most mature embryo sacs had completed fertilization and formed zygotes by about 50–54 DAP. In planta transformation was achieved by injection of the ovaries by Agrobacterium, resulting in 38 protocorms or seedlings after several rounds of hygromycin selection, corresponding to 2, 7, 5, 1, 3, 4, 9, and 7 plantlets from Agrobacterium-mediated ovary-injection at 30, 35, 42, 43, 45, 48, 50, and 53 DAP, respectively. Transformation efficiency was highest at 50 DAP (2.54%), followed by 2.48% at 53 DAP and 2.45% at 48 DAP. Four randomly selected hygromycin-resistant plants were GUS-positive after PCR analysis. Semi-quantitative PCR and quantitative real-time PCR analysis revealed the expression of the hpt gene in the leaves of eight hygromycin-resistant seedlings following Agrobacterium-mediated ovary-injection at 30, 35, 42, 43, 45, 48, 50, and 53 DAP, while hpt expression was not detected in the control. The best time to inject P. Maudiae ovaries in planta with Agrobacterium is 48-53 DAP, which corresponds to the period of fertilization. This protocol represents the first genetic transformation protocol for any Paphiopedilum species and will allow for expanded molecular breeding programs to introduce useful and interesting genes that can expand its ornamental and horticulturally important characteristics.

2021 ◽  
Vol 12 ◽  
Author(s):  
Bing Sun ◽  
Huaizhi Luo ◽  
Huan Jiang ◽  
Zhennan Wang ◽  
Aiqun Jia

Quorum sensing (QS) and biofilm formation inhibition activity of esculetin on Aeromonas hydrophila SHAe 115 were evaluated. Exposure to esculetin at 25, 50, and 100μg/ml significantly inhibited the production of protease and hemolysin, the formation of biofilms and attenuated the swarming motility of A. hydrophila SHAe 115. Biofilm forming inhibition was also observed through confocal laser scanning microscopy and scanning electron microscope. Quantitative real-time PCR analysis indicated that genes positively related to QS and biofilm formation were downregulated to varying degrees, while gene (litR) negatively related to biofilm formation was significantly upregulated. The phenotypic results were in good agreement with gene expression levels. These results indicated that esculetin would be a potential QS inhibitor for A. hydrophila.


Plant Methods ◽  
2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Rachele Tofanelli ◽  
Athul Vijayan ◽  
Sebastian Scholz ◽  
Kay Schneitz

Abstract Background A salient topic in developmental biology relates to the molecular and genetic mechanisms that underlie tissue morphogenesis. Modern quantitative approaches to this central question frequently involve digital cellular models of the organ or tissue under study. The ovules of the model species Arabidopsis thaliana have long been established as a model system for the study of organogenesis in plants. While ovule development in Arabidopsis can be followed by a variety of different imaging techniques, no experimental strategy presently exists that enables an easy and straightforward investigation of the morphology of internal tissues of the ovule with cellular resolution. Results We developed a protocol for rapid and robust confocal microscopy of fixed Arabidopsis ovules of all stages. The method combines clearing of fixed ovules in ClearSee solution with marking the cell outline using the cell wall stain SCRI Renaissance 2200 and the nuclei with the stain TO-PRO-3 iodide. We further improved the microscopy by employing a homogenous immersion system aimed at minimizing refractive index differences. The method allows complete inspection of the cellular architecture even deep within the ovule. Using the new protocol we were able to generate digital three-dimensional models of ovules of various stages. Conclusions The protocol enables the quick and reproducible imaging of fixed Arabidopsis ovules of all developmental stages. From the imaging data three-dimensional digital ovule models with cellular resolution can be rapidly generated using image analysis software, for example MorphographX. Such digital models will provide the foundation for a future quantitative analysis of ovule morphogenesis in a model species.


2009 ◽  
Vol 75 (21) ◽  
pp. 6850-6855 ◽  
Author(s):  
Titik Nuryastuti ◽  
Henny C. van der Mei ◽  
Henk J. Busscher ◽  
Susi Iravati ◽  
Abu T. Aman ◽  
...  

ABSTRACT Staphylococcus epidermidis is notorious for its biofilm formation on medical devices, and novel approaches to prevent and kill S. epidermidis biofilms are desired. In this study, the effect of cinnamon oil on planktonic and biofilm cultures of clinical S. epidermidis isolates was evaluated. Initially, susceptibility to cinnamon oil in planktonic cultures was compared to the commonly used antimicrobial agents chlorhexidine, triclosan, and gentamicin. The MIC of cinnamon oil, defined as the lowest concentration able to inhibit visible microbial growth, and the minimal bactericidal concentration, the lowest concentration required to kill 99.9% of the bacteria, were determined using the broth microdilution method and plating on agar. A checkerboard assay was used to evaluate the possible synergy between cinnamon oil and the other antimicrobial agents. The effect of cinnamon oil on biofilm growth was studied in 96-well plates and with confocal laser-scanning microscopy (CLSM). Biofilm susceptibility was determined using a metabolic 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Real-time PCR analysis was performed to determine the effect of sub-MIC concentrations of cinnamon oil on expression of the biofilm-related gene, icaA. Cinnamon oil showed antimicrobial activity against both planktonic and biofilm cultures of clinical S. epidermidis strains. There was only a small difference between planktonic and biofilm MICs, ranging from 0.5 to 1% and 1 to 2%, respectively. CLSM images indicated that cinnamon oil is able to detach and kill existing biofilms. Thus, cinnamon oil is an effective antimicrobial agent to combat S. epidermidis biofilms.


2021 ◽  
Author(s):  
Wan Koh ◽  
Andrew Thompson ◽  
Hanna Edwards ◽  
Paul Monis ◽  
Peta L Clode

Background Aquatic biofilms often serve as environmental reservoirs for microorganisms and provide them with a nutrient-rich growth environment under harsh conditions. With regard to Cryptosporidium, biofilms can serve as environmental reservoirs for oocysts, but may also support the growth of additional Cryptosporidium stages. Results Here we used confocal laser scanning microscopy, scanning electron microscopy (SEM), and flow cytometry to identify and describe various Cryptosporidium developmental stages present within aquatic biofilm systems, and to directly compare these to stages produced in cell culture. We also show that Cryptosporidium has the ability to form a parasitophorous vacuole independently, in a host-free biofilm environment, potentially allowing them to complete an extracellular life cycle. Correlative data from confocal and SEM imaging of the same cells confirmed that the observed developmental stages (including trophozoites, meronts, and merozoites) were Cryptosporidium. These microscopy observations were further supported by flow cytometric analyses, where excysted oocyst populations were detected in 1, 3 and 6 day-old Cryptosporidium-exposed biofilms, but not in biofilm-free controls. Conclusions These observations not only highlight the risk that aquatic biofilms pose in regards to Cryptosporidium outbreaks from water distribution systems, but further indicate that even simple biofilms are able to stimulate oocyst excystation and support the extracellular multiplication and development of Cryptosporidium within aquatic environments.


2021 ◽  
Vol 12 ◽  
Author(s):  
Enrico Battiston ◽  
Stéphane Compant ◽  
Livio Antonielli ◽  
Vincenzo Mondello ◽  
Christophe Clément ◽  
...  

Grapevine trunk diseases (GTDs) are a serious and growing threat to vineyards worldwide. The need for innovative control tools persists since pesticides used against some GTDs have been banned and only methods to prevent infections or to reduce foliar symptoms have been developed so far. In this context, the application of imaging methods, already applied to study plant–microbe interactions, represents an interesting approach to understand the effect of experimental treatments applied to reduce fungal colonization, on GTD-related pathogens activity. To this aim, trials were carried out to evaluate the efficacy of copper-based treatments, formulated with hydroxyapatite (HA) as co-adjuvant with innovative delivery properties, loaded with two different copper(II) compounds (tribasic sulfate and sulfate pentahydrate), and applied to grapevine propagation material to inhibit fungal wood colonization. The treated rootstock (Vitis berlandieri × Vitis riparia cv. K5BB) and scion cuttings (Vitis vinifera L., cv. Chardonnay) had been inoculated with a strain of Phaeoacremonium minimum (Pmi) compared to uninoculated rootstocks. Experimental treatments were applied during the water-soaking process, comparing the copper(II) compounds pure or formulated with HA, to hydrate the cuttings. After callusing, grafted vines were grown under greenhouse conditions in a nursery and inoculated with Pmi::gfp7 or with Pmi wild-type. Fifteen weeks post-inoculation, woody tissues close to the inoculation site were sampled to evaluate the efficiency of the treatments by studying the plant–microbe interaction by confocal laser scanning microscopy (CLSM). Copper and further elements were also quantified in the same tissues immediately after the treatments and on the CLSM samples. Finally, the grapevine defense responses were studied in the leaves of cuttings treated with the same formulations. The present investigation confirmed the relevant interaction of Pmi and the related transformed strain on the vascular tissues of grafted vines. Furthermore, in vitro assay revealed (i) the fungistatic effect of HA and the reduced effect of Cu fungicide when combined with HA. In planta assays showed (ii) the reduction of Pmi infection in propagation material treated with HA-Cu formulations, (iii) the movement of HA-Cu formulations inside the plant tissues and their persistence over time, and (iv) the plant defense reaction following the treatment with pure HA or Cu, or combined.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Yong-Ouk You ◽  
Na-Young Choi ◽  
Sun-Young Kang ◽  
Kang-Ju Kim

In the present study, the leaves ofRhus javanica(R. javanica) were extracted with ethanol, and we investigated the antimicrobial activity of the ethanol extract ofR. javanicaagainst methicillin-resistantStaphylococcus aureus(MRSA). Control groups were treated with media containing 0.1% DMSO. The ethanol extract ofR. javanicainhibited the growth of MRSA at concentrations ranging from 0.05 to 0.2 mg/mL and inhibited acid production at concentrations higher than 0.1 mg/mL (P<0.05). MRSA biofilm formation was determined by scanning electron microscopy and safranin staining. The ethanol extract ofR. javanicainhibited the formation of MRSA biofilms at concentrations higher than 0.05 mg/mL. In confocal laser scanning microscopy, high concentration (0.4–1.6 mg/mL) ofR. javanicaextract showed bactericidal effect in a dose-dependent manner. In real-time PCR analysis,R. javanicaextract showed the inhibition of the genetic expression of virulence factors such asmecA,sea,agrA, andsarAin MRSA. Preliminary phytochemical analysis revealed the strong presence of phenolics. These results suggest thatR. javanicamay be a useful medicinal plant for inhibiting MRSA, which may be related to the presence of phenolics in theR. javanicaextract.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Seung-Il Jeong ◽  
Beom-Su Kim ◽  
Ki-Suk Keum ◽  
Kwang-Hee Lee ◽  
Sun-Young Kang ◽  
...  

We isolated a single chemical compound fromA. continentalisand identified it to be kaurenoic acid (KA) and investigated the influence of anticariogenic properties. Inhibitory effects of KA on cariogenic properties such as growth, acid production, biofilm formation, and the adherence ofS. mutanswere evaluated. Furthermore, real-time PCR analysis was performed to evaluate the influence of KA on the genetic expression of virulence factors. KA significantly inhibited the growth and acid production ofS. mutansat 2–4 μg/mL and 4 μg/mL of KA, respectively. Furthermore, the adherence onto S-HAs was inhibited at 3-4 μg/mL of KA and biofilm formation was significantly inhibited when treated with 3 μg/mL KA and completely inhibited at 4 μg/mL. Also, the inhibitory effect of KA on biofilm formation was confirmed by SEM. In confocal laser scanning microscopy, bacterial viability gradually decreased by KA in a dose dependent manner. Real-time PCR analysis showed that the expressions ofgtfB, gtfC, gbpB, spaP, brpA, relA, andvicRwere significantly decreased inS. mutanswhen it was treated with KA. These results suggest that KA fromA. continentalismay be a useful agent for inhibiting the cariogenic properties ofS. mutans.


2020 ◽  
Vol 89 (3) ◽  
pp. 324-352
Author(s):  
Paul Kalke ◽  
Thomas Frase ◽  
Stefan Richter

Knowledge about the development of the nervous system in cirripeds is limited, particularly with regard to the changes that take place during the two metamorphoses their larvae undergo. This study delivers the first detailed description of the development of the nervous system in a cirriped species, Amphibalanus improvisus by using immunohistochemical labeling against acetylated alpha-tubulin, and confocal laser scanning microscopy. The development of the nervous system in the naupliar stages corresponds largely to that in other crustaceans. As development progresses, the protocerebral sensory organs differentiate and the intersegmental nerves forming the complex peripheral nervous system appear, innervating the sensory structures of the cephalic shield. During metamorphosis into a cypris the lateral sides of the cephalic shield fold down into a bilateral carapace, which leads to a reorganization of the peripheral nervous system. The syncerebrum of the cypris exhibits the highest degree of complexity of all developmental stages, innervating the frontal filaments, nauplius eye, compound eyes and the antennules. During settlement, when the second metamorphosis occur, the closely associated frontal filaments and compound eyes are shed together with the cuticle of the carapace and the antennules. In adults, the syncerebral structures are reduced while the ventral nerve cord and the peripheral nervous system increase in complexity. The peripheral nervous system plays an important role in processing sensory input and also in settlement. In summary, through the larval development we observed a structural and thus also functional increase of complexity in favor of the peripheral nervous system and the ventral nerve cord.


Sign in / Sign up

Export Citation Format

Share Document