scholarly journals MBNL2 Regulates DNA Damage Response via Stabilizing p21

2021 ◽  
Vol 22 (2) ◽  
pp. 783
Author(s):  
Jin Cai ◽  
Ningchao Wang ◽  
Guanglan Lin ◽  
Haowei Zhang ◽  
Weidong Xie ◽  
...  

RNA-binding proteins are frequently dysregulated in human cancer and able to modulate tumor cell proliferation as well as tumor metastasis through post-transcriptional regulation on target genes. Abnormal DNA damage response and repair mechanism are closely related to genome instability and cell transformation. Here, we explore the function of the RNA-binding protein muscleblind-like splicing regulator 2 (MBNL2) on tumor cell proliferation and DNA damage response. Transcriptome and gene expression analysis show that the PI3K/AKT pathway is enriched in MBNL2-depleted cells, and the expression of cyclin-dependent kinase inhibitor 1A (p21CDKN1A) is significantly affected after MBNL2 depletion. MBNL2 modulates the mRNA and protein levels of p21, which is independent of its canonical transcription factor p53. Moreover, depletion of MBNL2 increases the phosphorylation levels of checkpoint kinase 1 (Chk1) serine 345 (S345) and DNA damage response, and the effect of MBNL2 on DNA damage response is p21-dependent. MBNL2 would further alter tumor cell fate after DNA damage, MBNL2 knockdown inhibiting DNA damage repair and DNA damage-induced senescence, but promoting DNA damage-induced apoptosis.

2020 ◽  
Vol 117 (50) ◽  
pp. 31891-31901
Author(s):  
Maciej T. Nogalski ◽  
Thomas Shenk

Pericentromeric human satellite II (HSATII) repeats are normally silent but can be actively transcribed in tumor cells, where increased HSATII copy number is associated with a poor prognosis in colon cancer, and in human cytomegalovirus (HCMV)-infected fibroblasts, where the RNA facilitates viral replication. Here, we report that HCMV infection or treatment of ARPE-19 diploid epithelial cells with DNA-damaging agents, etoposide or zeocin, induces HSATII RNA expression, and a kinase-independent function of ATM is required for the induction. Additionally, various breast cancer cell lines growing in adherent, two-dimensional cell culture express HSATII RNA at different levels, and levels are markedly increased when cells are infected with HCMV or treated with zeocin. High levels of HSATII RNA expression correlate with enhanced migration of breast cancer cells, and knockdown of HSATII RNA reduces cell migration and the rate of cell proliferation. Our investigation links high expression of HSATII RNA to the DNA damage response, centered on a noncanonical function of ATM, and demonstrates a role for the satellite RNA in tumor cell proliferation and movement.


2020 ◽  
Vol 21 (21) ◽  
pp. 8039
Author(s):  
Iwona Rzeszutek ◽  
Gabriela Betlej

DNA damage is a common phenomenon promoted through a variety of exogenous and endogenous factors. The DNA damage response (DDR) pathway involves a wide range of proteins, and as was indicated, small noncoding RNAs (sncRNAs). These are double-strand break-induced RNAs (diRNAs) and DNA damage response small RNA (DDRNA). Moreover, RNA binding proteins (RBPs) and RNA modifications have also been identified to modulate diRNA and DDRNA function in the DDR process. Several theories have been formulated regarding the synthesis and function of these sncRNAs during DNA repair; nevertheless, these pathways’ molecular details remain unclear. Here, we review the current knowledge regarding the mechanisms of diRNA and DDRNA biosynthesis and discuss the role of sncRNAs in maintaining genome stability.


2020 ◽  
Author(s):  
Maciej T. Nogalski ◽  
Thomas Shenk

ABSTRACTPericentromeric human satellite II (HSATII) repeats are normally silent, but can be actively transcribed in tumor cells, where increased HSATII copy number is associated with a poor prognosis in colon cancer, and in human cytomegalovirus (HCMV)-infected cells, where the RNA facilitates viral replication. Here, we report that HCMV infection or treatment of ARPE-19 diploid epithelial cells with the DNA-damaging agents, etoposide and zeocin, induced HSATII RNA expression, and a kinase-independent function of ATM was required for the induction. Additionally, various breast cancer cell lines growing in adherent, 2-dimensional cell culture expressed HSATII RNA at different levels, and levels were markedly increased when cells were either infected with HCMV or treated with zeocin. High levels of HSATII RNA expression correlated with enhanced migration of breast cancer cells, and knockdown of HSATII RNA reduced cell migration and the rate of cell proliferation. Our investigation links high expression of HSATII RNA to the DNA damage response, centered on a non-canonical function of ATM, and demonstrates a role for the satellite RNA in tumor cell proliferation and movement.SIGNIFICANCEHSATII RNA is associated with cancer progression, immunostimulation and, as we recently reported, it plays an important role in herpesvirus infections. However, the understanding of cellular processes responsible for the expression of HSATII RNA has been limited. Our current investigation identified a non-canonical, ATM kinase-independent DNA-damage response pathway as a common cellular mechanism regulating HSATII RNA induction in virus-infected cells or cells treated with DNA-damaging agents. Additionally, our study provides a link between expression of HSATII RNA and the cellular growth and migration phenotypes of cancer cells, establishing a new paradigm to study the biological consequences of HSATII RNA expression, i.e., treatment of normal diploid and tumor cells with DNA-damaging agents.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1514-1514
Author(s):  
Jie Li ◽  
Fukun Guo ◽  
Jared Sipple ◽  
Sara Kozma ◽  
George Thomas ◽  
...  

Abstract Abstract 1514 The mammalian target of rapamycin (mTOR) is a key regulator of nutrient metabolism, cell growth and proliferation. Inhibition of mTOR signaling by rapamycin or rapamycin in combination with antineoplastic agents has been shown to block cancer cell proliferation and cancer angiogenesis. Second-generation pharmacological mTOR inhibitors, which inhibit both mTORC1 and mTORC2 by directly targeting the ATP-binding site of mTOR, have recently shown improved activity in tumor suppression and are under clinical development for cancer therapy. Indeed, it is found that the mTOR kinase inhibitor PP242 inhibits cell proliferation more effectively than rapamycin in pre-clinical models, suggesting the additive contributions of mTORC1 and mTORC2 to cancer cell proliferation and survival. In the present study, we have explored the therapeutic value of PP242 in sensitizing tumor suppression by anti-cancer drugs. We found that the combination of PP242 with Cytarabine (AraC) or Etoposide induced significant higher apoptosis than single-agent treatment in several human lymphoma and leukemia cell lines including K562, Molt-Luc2, and K562-Luc2. Specifically, using Molt-Luc2 cells, the percentages of apoptosis for combined PP242-AraC and PP242-Etoposide treatments were 76.3±4.2% and 78.2+5.9%, respectively, in comparison with 52.7±6.3% and 38.2±4.5%, respectively, in AraC- and Etoposide-treated cells; the basal level of apoptosis in these leukemic cells was 5–8%. Further, PP242, but not Rapamycin, sensitized the leukemia and lymphoma cells to DNA damage induced by AraC or Etoposide, evidenced by a marked increase in g-H2AX foci (94±5% cells in PP242-AraC group vs 25±3% cells in AraC-alone group or 98±4% cells in PP242- Etoposide group vs 36±3% cells in Etoposide-alone group), as well as DNA-strand breaks (comet-tailed value of 25.4±1.2% in PP242-AraC group and 31.2±3.2% in PP242-Etoposide group compared to 9.8±1.2% in AraC-alone and 11.4±2.8% Etoposide-alone groups, respectively). This increased DNA damage response can be attributed to a suppression of the expression of FANCD2, a critical DNA damage repair component of the Fanconi pathway, by PP242, in both normal lymphoblasts and leukemic cells. Significantly, the effect of PP242 on Fanconi gene expression was FANCD2-specific as PP242 had no effect on the expression of other Fanconi proteins such as FANCA and FANCC, and forced expression of FANCD2 by a viral promoter completely abolished the sensitizing effect of PP242 on drug-induced leukemia cell death. We are currently using a mouse xenotransplant model to explore the in vivo effect of the combination of PP242 with AraC for human leukemia cells. Our findings suggest that the mTOR kinase inhibitor PP242 enhances antitumor activity of conventional chemo-drugs by suppressing FANCD2 and associated DNA damage response and consequently augmenting DNA damage leading to apoptosis. Therefore, PP242 combined with chemotherapy could represent a novel strategy for the treatment of hematopoietic malignancies. Disclosures: No relevant conflicts of interest to declare.


Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1446
Author(s):  
Sivakumar Vadivel Vadivel Gnanasundram ◽  
Ondrej Bonczek ◽  
Lixiao Wang ◽  
Sa Chen ◽  
Robin Fahraeus

Human cells are subjected to continuous challenges by different genotoxic stress attacks. DNA damage leads to erroneous mutations, which can alter the function of oncogenes or tumor suppressors, resulting in cancer development. To circumvent this, cells activate the DNA damage response (DDR), which mainly involves cell cycle regulation and DNA repair processes. The tumor suppressor p53 plays a pivotal role in the DDR by halting the cell cycle and facilitating the DNA repair processes. Various pathways and factors participating in the detection and repair of DNA have been described, including scores of RNA-binding proteins (RBPs) and RNAs. It has become increasingly clear that p53’s role is multitasking, and p53 mRNA regulation plays a prominent part in the DDR. This review is aimed at covering the p53 RNA metabolism linked to the DDR and highlights the recent findings.


Sign in / Sign up

Export Citation Format

Share Document