scholarly journals APOE: The New Frontier in the Development of a Therapeutic Target towards Precision Medicine in Late-Onset Alzheimer’s

2021 ◽  
Vol 22 (3) ◽  
pp. 1244
Author(s):  
Anna Yang ◽  
Boris Kantor ◽  
Ornit Chiba-Falek

Alzheimer’s disease (AD) has a critical unmet medical need. The consensus around the amyloid cascade hypothesis has been guiding pre-clinical and clinical research to focus mainly on targeting beta-amyloid for treating AD. Nevertheless, the vast majority of the clinical trials have repeatedly failed, prompting the urgent need to refocus on other targets and shifting the paradigm of AD drug development towards precision medicine. One such emerging target is apolipoprotein E (APOE), identified nearly 30 years ago as one of the strongest and most reproduceable genetic risk factor for late-onset Alzheimer’s disease (LOAD). An exploration of APOE as a new therapeutic culprit has produced some very encouraging results, proving that the protein holds promise in the context of LOAD therapies. Here, we review the strategies to target APOE based on state-of-the-art technologies such as antisense oligonucleotides, monoclonal antibodies, and gene/base editing. We discuss the potential of these initiatives in advancing the development of novel precision medicine therapies to LOAD.

2021 ◽  
Vol 79 (3) ◽  
pp. 961-968
Author(s):  
Wolfgang J. Streit ◽  
Habibeh Khoshbouei ◽  
Ingo Bechmann

Microglia constitute the brain’s immune system and their involvement in Alzheimer’s disease has been discussed. Commonly, and in line with the amyloid/neuroinflammation cascade hypothesis, microglia have been portrayed as potentially dangerous immune effector cells thought to be overactivated by amyloid and producing neurotoxic inflammatory mediators that lead to neurofibrillary degeneration. We disagree with this theory and offer as an alternative the microglial dysfunction theory stating that microglia become impaired in their normally neuroprotective roles because of aging, i.e., they become senescent and aging neurons degenerate because they lack the needed microglial support for their survival. Thus, while the amyloid cascade theory relies primarily on genetic data, the dysfunction theory incorporates aging as a critical etiological factor. Aging is the greatest risk factor for the sporadic (late-onset) and most common form of Alzheimer’s disease, where fully penetrant genetic mutations are absent. In this review, we lay out and discuss the human evidence that supports senescent microglial dysfunction and conflicts with the amyloid/neuroinflammation idea.


Author(s):  
H. Hampel ◽  
S.E. O’Bryant ◽  
J.I. Castrillo ◽  
C. Ritchie ◽  
K. Rojkova ◽  
...  

During this decade, breakthrough conceptual shifts have commenced to emerge in the field of Alzheimer’s disease (AD) recognizing risk factors and the non-linear dynamic continuum of complex pathophysiologies amongst a wide dimensional spectrum of multi-factorial brain proteinopathies/neurodegenerative diseases. As is the case in most fields of medicine, substantial advancements in detecting, treating and preventing AD will likely evolve from the generation and implementation of a systematic precision medicine strategy. This approach will likely be based on the success found from more advanced research fields, such as oncology. Precision medicine will require integration and transfertilization across fragmented specialities of medicine and direct reintegration of Neuroscience, Neurology and Psychiatry into a continuum of medical sciences away from the silo approach. Precision medicine is biomarker-guided medicine on systems-levels that takes into account methodological advancements and discoveries of the comprehensive pathophysiological profiles of complex multi-factorial neurodegenerative diseases, such as late-onset sporadic AD. This will allow identifying and characterizing the disease processes at the asymptomatic preclinical stage, where pathophysiological and topographical abnormalities precede overt clinical symptoms by many years to decades. In this respect, the uncharted territory of the AD preclinical stage has become a major research challenge as the field postulates that early biomarker guided customized interventions may offer the best chance of therapeutic success. Clarification and practical operationalization is needed for comprehensive dissection and classification of interacting and converging disease mechanisms, description of genomic and epigenetic drivers, natural history trajectories through space and time, surrogate biomarkers and indicators of risk and progression, as well as considerations about the regulatory, ethical, political and societal consequences of early detection at asymptomatic stages. In this scenario, the integrated roles of genome sequencing, investigations of comprehensive fluid-based biomarkers and multimodal neuroimaging will be of key importance for the identification of distinct molecular mechanisms and signaling pathways in subsets of asymptomatic people at greatest risk for progression to clinical milestones due to those specific pathways. The precision medicine strategy facilitates a paradigm shift in Neuroscience and AD research and development away from the classical “one-size-fits-all” approach in drug discovery towards biomarker guided “molecularly” tailored therapy for truly effective treatment and prevention options. After the long and winding decade of failed therapy trials progress towards the holistic systems-based strategy of precision medicine may finally turn into the new age of scientific and medical success curbing the global AD epidemic.


2006 ◽  
Vol 14 (7S_Part_1) ◽  
pp. P7-P7
Author(s):  
Jeffrey Petrella ◽  
Wenrui Hao ◽  
Adithi Rao ◽  
Murali Doraiswamy

Healthcare ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 82 ◽  
Author(s):  
Cara Berkowitz ◽  
Lisa Mosconi ◽  
Olivia Scheyer ◽  
Aneela Rahman ◽  
Hollie Hristov ◽  
...  

Precision medicine is an approach to medical treatment and prevention that takes into account individual variability in genes, environment, and lifestyle and allows for personalization that is based on factors that may affect the response to treatment. Several genetic and epigenetic risk factors have been shown to increase susceptibility to late-onset Alzheimer’s disease (AD). As such, it may be beneficial to integrate genetic risk factors into the AD prevention approach, which in the past has primarily been focused on universal risk-reduction strategies for the general population rather than individualized interventions in a targeted fashion. This review discusses examples of a “one-size-fits-all” versus clinical precision medicine AD prevention strategy, in which the precision medicine approach considers two genes that can be commercially sequenced for polymorphisms associated with AD, apolipoprotein E (APOE), and methylenetetrahydrofolate reductase (MTHFR). Comparing these two distinct approaches provides support for a clinical precision medicine prevention strategy, which may ultimately lead to more favorable patient outcomes as the interventions are targeted to address individualized risks.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
R. A. Armstrong

The most influential theory to explain the pathogenesis of Alzheimer's disease (AD) has been the “Amyloid Cascade Hypothesis” (ACH) first formulated in 1992. The ACH proposes that the deposition ofβ-amyloid (Aβ) is the initial pathological event in AD leading to the formation of senile plaques (SPs) and then to neurofibrillary tangles (NFTs) death of neurons, and ultimately dementia. This paper examines two questions regarding the ACH: (1) is there a relationship between the pathogenesis of SPs and NFTs, and (2) what is the relationship of these lesions to disease pathogenesis? These questions are examined in relation to studies of the morphology and molecular determinants of SPs and NFTs, the effects of gene mutation, degeneration induced by head injury, the effects of experimentally induced brain lesions, transgenic studies, and the degeneration of anatomical pathways. It was concluded that SPs and NFTs develop independently and may be the products rather than the causes of neurodegeneration in AD. A modification to the ACH is proposed which may better explain the pathogenesis of AD, especially of late-onset cases of the disease.


2014 ◽  
Vol 56 ◽  
pp. 99-110 ◽  
Author(s):  
David Allsop ◽  
Jennifer Mayes

One of the hallmarks of AD (Alzheimer's disease) is the formation of senile plaques in the brain, which contain fibrils composed of Aβ (amyloid β-peptide). According to the ‘amyloid cascade’ hypothesis, the aggregation of Aβ initiates a sequence of events leading to the formation of neurofibrillary tangles, neurodegeneration, and on to the main symptom of dementia. However, emphasis has now shifted away from fibrillar forms of Aβ and towards smaller and more soluble ‘oligomers’ as the main culprit in AD. The present chapter commences with a brief introduction to the disease and its current treatment, and then focuses on the formation of Aβ from the APP (amyloid precursor protein), the genetics of early-onset AD, which has provided strong support for the amyloid cascade hypothesis, and then on the development of new drugs aimed at reducing the load of cerebral Aβ, which is still the main hope for providing a more effective treatment for AD in the future.


2003 ◽  
Author(s):  
J. M. Silverman ◽  
C. J. Smith ◽  
D. B. Marin ◽  
R. C. Mohs ◽  
C. B. Propper

2020 ◽  
Vol 21 (12) ◽  
pp. 1164-1173
Author(s):  
Siju Ellickal Narayanan ◽  
Nikhila Sekhar ◽  
Rajalakshmi Ganesan Rajamma ◽  
Akash Marathakam ◽  
Abdullah Al Mamun ◽  
...  

: Alzheimer’s disease (AD) is a progressive brain disorder and one of the most common causes of dementia and death. AD can be of two types; early-onset and late-onset, where late-onset AD occurs sporadically while early-onset AD results from a mutation in any of the three genes that include amyloid precursor protein (APP), presenilin 1 (PSEN 1) and presenilin 2 (PSEN 2). Biologically, AD is defined by the presence of the distinct neuropathological profile that consists of the extracellular β-amyloid (Aβ) deposition in the form of diffuse neuritic plaques, intraneuronal neurofibrillary tangles (NFTs) and neuropil threads; in dystrophic neuritis, consisting of aggregated hyperphosphorylated tau protein. Elevated levels of (Aβ), total tau (t-tau) and phosphorylated tau (ptau) in cerebrospinal fluid (CSF) have become an important biomarker for the identification of this neurodegenerative disease. The aggregation of Aβ peptide derived from amyloid precursor protein initiates a series of events that involve inflammation, tau hyperphosphorylation and its deposition, in addition to synaptic dysfunction and neurodegeneration, ultimately resulting in dementia. The current review focuses on the role of proteomes in the pathogenesis of AD.


2020 ◽  
Vol 20 ◽  
Author(s):  
Md. Sahab Uddin ◽  
Sharifa Hasana ◽  
Md. Farhad Hossain ◽  
Md. Siddiqul Islam ◽  
Tapan Behl ◽  
...  

: Alzheimer’s disease (AD) is the most common form of dementia in the elderly and this complex disorder is associated with environmental as well as genetic components. Early-onset AD (EOAD) and late-onset AD (LOAD, more common) are major identified types of AD. The genetics of EOAD is extensively understood with three genes variants such as APP, PSEN1, and PSEN2 leading to disease. On the other hand, some common alleles including APOE are effectively associated with LOAD identified but the genetics of LOAD is not clear to date. It has been accounted that about 5% to 10% of EOAD patients can be explained through mutations in the three familiar genes of EOAD. The APOE ε4 allele augmented the severity of EOAD risk in carriers, and APOE ε4 allele was considered as a hallmark of EOAD. A great number of EOAD patients, who are not genetically explained, indicate that it is not possible to identify disease- triggering genes yet. Although several genes have been identified through using the technology of next-generation sequencing in EOAD families including SORL1, TYROBP, and NOTCH3. A number of TYROBP variants were identified through exome sequencing in EOAD patients and these TYROBP variants may increase the pathogenesis of EOAD. The existence of ε4 allele is responsible for increasing the severity of EOAD. However, several ε4 allele carriers live into their 90s that propose the presence of other LOAD genetic as well as environmental risk factors that are not identified yet. It is urgent to find out missing genetics of EOAD and LOAD etiology to discover new potential genetics facets which will assist to understand the pathological mechanism of AD. These investigations should contribute to developing a new therapeutic candidate for alleviating, reversing and preventing AD. This article based on current knowledge represents the overview of the susceptible genes of EOAD, and LOAD. Next, we represent the probable molecular mechanism which might elucidate the genetic etiology of AD and highlight the role of massively parallel sequencing technologies for novel gene discoveries.


2020 ◽  
Vol 16 (12) ◽  
pp. 1073-1083 ◽  
Author(s):  
Alessandra Micera ◽  
Luca Bruno ◽  
Andrea Cacciamani ◽  
Mauro Rongioletti ◽  
Rosanna Squitti

Background: Life expectancy is increasing all over the world, although neurodegenerative disorders might drastically affect the individual activity of aged people. Of those, Alzheimer’s Disease (AD) is one of the most social-cost age-linked diseases of industrialized countries. To date, retinal diseases seem to be more common in the developing world and characterize principally aged people. Agerelated Macular Degeneration (AMD) is a late-onset, neurodegenerative retinal disease that shares several clinical and pathological features with AD, including stress stimuli such as oxidative stress, inflammation and amyloid formations. Method: In both diseases, the detrimental intra/extra-cellular deposits have many similarities. Aging, hypercholesterolemia, hypertension, obesity, arteriosclerosis and smoking are risk factors to develop both diseases. Cellular aging routes have similar organelle and signaling patterns in retina and brain. The possibility to find out new research strategies represent a step forward to disclose potential treatment for both of them. Essential trace metals play critical roles in both physiological and pathological condition of retina, optic nerve and brain, by influencing metabolic processes chiefly upon complex multifactorial pathogenesis. Conclusion: Hence, this review addresses current knowledge about some up-to-date investigated essential trace metals associated with AD and AMD. Changes in the levels of systemic and ocular fluid essential metals might reflect the early stages of AMD, possibly disclosing neurodegeneration pathways shared with AD, which might open to potential early detection.


Sign in / Sign up

Export Citation Format

Share Document