scholarly journals Density Functional Theory-Based Calculation Shed New Light on the Bizarre Addition of Cysteine Thiol to Dopaquinone

2021 ◽  
Vol 22 (3) ◽  
pp. 1373
Author(s):  
Ryo Kishida ◽  
Shosuke Ito ◽  
Manickam Sugumaran ◽  
Ryan Lacdao Arevalo ◽  
Hiroshi Nakanishi ◽  
...  

Two types of melanin pigments, brown to black eumelanin and yellow to reddish brown pheomelanin, are biosynthesized through a branched reaction, which is associated with the key intermediate dopaquinone (DQ). In the presence of l-cysteine, DQ immediately binds to the –SH group, resulting in the formation of cysteinyldopa necessary for the pheomelanin production. l-Cysteine prefers to bond with aromatic carbons adjacent to the carbonyl groups, namely C5 and C2. Surprisingly, this Michael addition takes place at 1,6-position of the C5 (and to some extent at C2) rather than usually expected 1,4-position. Such an anomaly on the reactivity necessitates an atomic-scale understanding of the binding mechanism. Using density functional theory-based calculations, we investigated the binding of l-cysteine thiolate (Cys–S−) to DQ. Interestingly, the C2–S bonded intermediate was less energetically stable than the C6–S bonded case. Furthermore, the most preferred Cys–S−-attacked intermediate is at the carbon-carbon bridge between the two carbonyls (C3–C4 bridge site) but not on the C5 site. This structure allows the Cys–S− to migrate onto the adjacent C5 or C2 with small activation energies. Further simulation demonstrated a possible conversion pathway of the C5–S (and C2–S) intermediate into 5-S-cysteinyldopa (and 2-S-cysteinyldopa), which is the experimentally identified major (and minor) product. Based on the results, we propose that the binding of Cys–S− to DQ proceeds via the following path: (i) coordination of Cys–S− to C3–C4 bridge, (ii) migration of Cys–S− to C5 (C2), (iii) proton rearrangement from cysteinyl –NH3+ to O4 (O3), and (iv) proton rearrangement from C5 (C2) to O3 (O4).

2007 ◽  
Vol 546-549 ◽  
pp. 1455-1460 ◽  
Author(s):  
Jun Min Hu ◽  
Jia Xiang Shang ◽  
Yue Zhang ◽  
Chun Gen Zhou ◽  
Hui Bin Xu

The oxygen atom adsorption at Al-Al bridge, Ni-Ni bridge, Al top and Ni top site on the NiAl(110) surface by first-principles method within density functional theory has been studied in this paper. It has been found that the preferred adsorption position of the oxygen was at the Al-Al bridge site then the Ni-Ni bridge site. The charge transfer took place obviously between the O atom and the nearest Al atoms, but no charge transferred from the nearest Ni atoms to O atom. For the Al-Al (Ni-Ni) bridge adsorption site, the bond lengths of Al-O and Ni-O were about 1.741 Å (1.700Å) and 2.369Å (2.012Å), respectively, which means that the Al atom is easier to be oxidized than the Ni atom. It is revealed that the Al atom oxidized selectively and the chemical bond formed between the O ion and the nearest Al ions during the initial oxidation stage.


RSC Advances ◽  
2017 ◽  
Vol 7 (7) ◽  
pp. 3667-3675 ◽  
Author(s):  
Meng Wang ◽  
Wanjian Ding ◽  
Dongqi Wang

The binding of uranyl to serum transferrin follows a Tyr* → Tyr* → Asp* stepwise mechanism.


MRS Bulletin ◽  
2006 ◽  
Vol 31 (9) ◽  
pp. 669-674 ◽  
Author(s):  
J.K. Nørskov ◽  
M. Scheffler ◽  
H. Toulhoat

AbstractSolid surfaces are used extensively as catalysts throughout the chemical industry, in the energy sector, and in environmental protection. Recently, density functional theory has started providing new insight into the atomic-scale mechanisms of heterogeneous catalysis, helping to interpret the large amount of experimental data gathered during the last decades. This article shows how density functional theory can be used to describe the state of the surface during reactions and the rate of catalytic reactions. It will also show how we are beginning to understand the variation in catalytic activity from one transition metal to the next. Finally, the prospects of using calculations to guide the development of new catalysts in industry will be discussed.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2803 ◽  
Author(s):  
Denis Chachkov ◽  
Rezeda Ismagilova ◽  
Yana Vereshchagina

The mechanism of reactions of silatranes and germatranes, and their bicyclic and monocyclic analogues with one molecule of methanol or ethanol, was studied at the Density Functional Theory (DFT) B3PW91/6-311++G(df,p) level of theory. Reactions of 1-substituted sil(germ)atranes, 2,2-disubstituted sil(germ)ocanes, and 1,1,1-trisubstituted hyposil(germ)atranes with alcohol (methanol, ethanol) proceed in one step through four-center transition states followed by the opening of a silicon or germanium skeleton and the formation of products. According to quantum chemical calculations, the activation energies and Gibbs energies of activation of reactions with methanol and ethanol are close, their values decrease in the series of atranes–ocanes–hypoatranes for interactions with both methanol and ethanol. The reactions of germanium-containing derivatives are characterized by lower activation energies in comparison with the reactions of corresponding silicon-containing compounds. The annular configurations of the product molecules with electronegative substituents are stabilized by the transannular N→X (X = Si, Ge) bond and different intramolecular hydrogen contacts with the participation of heteroatoms of substituents at the silicon or germanium.


Sign in / Sign up

Export Citation Format

Share Document