scholarly journals ESR1 ChIP-Seq Identifies Distinct Ligand-Free ESR1 Genomic Binding Sites in Human Hepatocytes and Liver Tissue

2021 ◽  
Vol 22 (3) ◽  
pp. 1461
Author(s):  
Joseph M. Collins ◽  
Zhiguang Huo ◽  
Danxin Wang

The estrogen receptor alpha (ESR1) is an important gene transcriptional regulator, known to mediate the effects of estrogen. Canonically, ESR1 is activated by its ligand estrogen. However, the role of unliganded ESR1 in transcriptional regulation has been gaining attention. We have recently shown that ligand-free ESR1 is a key regulator of several cytochrome P450 (CYP) genes in the liver, however ligand-free ESR1 has not been characterized genome-wide in the human liver. To address this, ESR1 ChIP-Seq was conducted in human liver samples and in hepatocytes with or without 17beta-estradiol (E2) treatment. We identified both ligand-dependent and ligand-independent binding sites throughout the genome. These two ESR1 binding categories showed different genomic localization, pathway enrichment, and cofactor colocalization, indicating different ESR1 regulatory function depending on ligand availability. By analyzing existing ESR1 data from additional human cell lines, we uncovered a potential ligand-independent ESR1 activity, namely its co-enrichment with the zinc finger protein 143 (ZNF143). Furthermore, we identified ESR1 binding sites near many gene loci related to drug therapy, including the CYPs. Overall, this study shows distinct ligand-free and ligand-bound ESR1 chromatin binding profiles in the liver and suggests the potential broad influence of ESR1 in drug metabolism and drug therapy.

2008 ◽  
Vol 60 (3) ◽  
pp. 379-387 ◽  
Author(s):  
Natasa Kovacevic-Grujicic ◽  
Kazunari Yokoyama ◽  
Milena Stevanovic

In this study, we examine the role of three highly conserved putative binding sites for Myc-associated zinc finger protein (MAZ) in regulation of the human SOX3 gene expression. Electrophoretic mobility shift and supershift assays indicate that complexes formed at two out of three MAZ sites of the human SOX3 promoter involve ubiquitously expressed MAZ protein. Furthermore, in cotransfection experiments we demonstrate that MAZ acts as a positive regulator of SOX3 gene transcription in both undifferentiated and RA-differentiated NT2/D1 cells. Although MAZ increased both basal and RA-induced promoter activity, our results suggest that MAZ does not contribute to RA inducibility of the SOX3 promoter during neuronal differentiation of NT2/D1 cells.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 283-283
Author(s):  
Andre M. Pilon ◽  
Elliott H. Margulies ◽  
Hatice Ozel Abaan ◽  
Amy Werner- Allen ◽  
Tim M. Townes ◽  
...  

Abstract Erythroid Kruppel-Like Factor (EKLF; KLF1) is the founding member of the Kruppel family of transcription factors, with 3 C2H2 zinc-fingers that bind a 9-base consensus sequence (NCNCNCCCN). The functions of EKLF, first identified as an activator of the beta-globin locus, include gene activation and chromatin remodeling. Our knowledge of genes regulated by EKLF is limited, as EKLF-deficient mice die by embryonic day 15 (E15), due to a severe anemia. Analysis of E13.5 wild type and EKLF-deficient fetal liver (FL) erythroid cells revealed that EKLF-deficient cells fail to complete terminal erythroid maturation (Pilon et al. submitted). Coupling chromatin immunoprecipitation and ultra high-throughput massively parallel sequencing (ChIP-seq) is increasingly being used for mapping protein-DNA interactions in vivo on a genome-wide scale. ChIP-seq allows a simultaneous analysis of transcription factor binding in every region of the genome, defining an “interactome”. To elucidate direct EKLF-dependent effects on erythropoiesis, we have combined ChIP-seq with expression array (“transcriptome”) analyses. We feel that integration of ChIP-seq and microarray data can provide us detailed knowledge of the role of EKLF in erythropoiesis. Chromatin was isolated from E13.5 FL cells of mice whose endogenous EKLF gene was replaced with a fully functional HA-tagged EKLF gene. ChIP was performed using a highly specific high affinity anti-HA antibody. A library of EKLF-bound FL chromatin enriched by anti-HA IP was created and subjected to fluorescent in situ sequencing on a Solexa 1G platform, providing 36-base signatures that were mapped to unique sites in the mouse genome, defining the EKLF “interactome.” The frequency with which a given signature appears provides a measurable peak of enrichment. We performed three biological/technical replicates and analyzed each data set individually as well as the combined data. To validate ChIP-seq results, we examined the locus of a known EKLF target gene, a-hemoglobin stabilizing protein (AHSP). Peaks corresponded to previously identified DNase hypersensitive sites, regions of histone hyperacetylation, and sites of promoter-occupancy determined by ChIP-PCR. A genome wide analysis, focusing on the regions with the highest EKLF occupancy revealed a set of 531 locations where high levels EKLF binding occurs. Of these sites, 119 (22%) are located 10 kb or more from the nearest gene and are classified as intergenic EKLF binding sites. Another 78 sites (14.6%) are within 10 kb of an annotated RefSeq gene. A plurality of the binding sites, 222 (42%), are within RefSeq coordinates and are classified as intragenic EKLF binding sites. Microarray profiling of mRNA from sorted, matched populations of dE13.5 WT and EKLF-deficient FL erythroid progenitor cells showed dysregulation of >3000 genes (p<0.05). Ingenuity Pathways Analysis (IPA) of the >3000 dysregulated mRNAs indicated significant alteration of a cell cycle-control network, centered about the transcription factor, E2f2. We confirmed significantly decreased E2f2 mRNA and protein levels by real-time PCR and Western blot, respectively; demonstrated that EKLF-deficient FL cells accumulate in G0/G1 by cell cycle analysis; and verified EKLF-binding to motifs within the E2f2 promoter by ChIP-PCR and analysis of the ChIP Seq data. We hypothesized that only a subset of the 3000 dysregulated genes would be direct EKLF targets. We limited the ChIP-seq library to display the top 5% most frequently represented fragments across the genome, and applied this criterion to the network of dysregulated mRNAs in the IPA cell cycle network. ChIP-seq identified peaks of EKLF association with 60% of the loci in this pathway. However, consistent with the role of EKLF as a transcriptional activator, 95% of the occupied genomic loci corresponded to mRNAs whose expression in EKLF-deficient FL cells was significantly decreased (p<0.05). The majority (59%) of these EKLF-bound sites were located at intragenic sites (i.e., introns), while a minority (15% and 26%) were found adjacent to the genes or in intergenic regions. We have shown that both the AHSP and E2f2 loci require EKLF to cause the locus to become activated and sensitive to DNase I digestion in erythroid cells. Based on the increased frequency of intragenic EKLF-binding sites, particularly in genes of the cell cycle network, we propose that the occupancy of intragenic sites by EKLF may facilitate chromatin modification.


2018 ◽  
Author(s):  
Niko Välimäki ◽  
Heli Kuisma ◽  
Annukka Pasanen ◽  
Oskari Heikinheimo ◽  
Jari Sjöberg ◽  
...  

ABSTRACTUterine leiomyomas (ULs) are benign tumors that are a major burden to women’s health. A genome-wide association study on 5,417 UL cases and 331,791 controls was performed, followed by replication of the genomic risk in two cohorts. Effects of the identified risk alleles were evaluated in view of molecular and clinical features.Five loci displayed a genome-wide significant association; the previously reported TNRC6B, and four novel loci ESR1 (ERα), WT1, WNT4, and ATM. The sixth hit TERT is also a conceivable target. The combined polygenic risk contributed by these loci was associated with MED12 mutation-positive tumors. The findings link genes for uterine development and genetic stability to leiomyomagenesis. While the fundamental role of sex hormones in UL aetiology has been clear, this work reveals a connection to estrogen receptor alpha on genetic level and suggests that determinants of UL growth associated with estrogen exposure have an inherited component.


2022 ◽  
Author(s):  
Daniel F Kaemena ◽  
Masahito Yoshihara ◽  
James Ashmore ◽  
Meryam Beniazza ◽  
Suling Zhao ◽  
...  

Successful generation of induced pluripotent stem cells (iPSCs) via the overexpression of Oct4 (Pou5f1), Sox2, Klf4 and c-Myc (OSKM) highlights the power of transcription factor (TF)-mediated cellular conversions. Nevertheless, iPSC reprogramming is inherently inefficient and understanding the molecular mechanisms underlying this inefficiency holds the key to control cellular identity successfully. Here, we report 16 novel reprogramming roadblock genes identified by CRISPR/Cas9-mediated genome-wide knockout (KO) screening. Of these, disruption of KRAB zinc finger protein (KRAB-ZFP) Zfp266 strongly and consistently enhanced iPSC generation in several iPSC reprogramming settings, emerging as the most robust roadblock. Further analyses revealed that ZFP266 bound Short Interspersed Nuclear Elements (SINEs) adjacent to OSK binding sites and impedes chromatin opening. This work serves as a resource for better understanding reprogramming mechanisms and proposes SINEs as a critical genetic element that regulates chromatin accessibility at enhancers for efficient pluripotency induction.


Genetics ◽  
2021 ◽  
Author(s):  
Krishnaprasad G Nandanan ◽  
Sagar Salim ◽  
Ajith V Pankajam ◽  
Miki Shinohara ◽  
Gen Lin ◽  
...  

Abstract In the baker’s yeast Saccharomyces cerevisiae, most of the meiotic crossovers are generated through a pathway involving the highly conserved mismatch repair related Msh4-Msh5 complex. To understand the role of Msh4-Msh5 in meiotic crossing over, we determined its genome wide in vivo binding sites in meiotic cells. We show that Msh5 specifically associates with DSB hotspots, chromosome axes, and centromeres on chromosomes. A basal level of Msh5 association with these chromosomal features is observed even in the absence of DSB formation (spo11Δ mutant) at the early stages of meiosis. But efficient binding to DSB hotspots and chromosome axes requires DSB formation and resection and is enhanced by double Holliday junction structures. Msh5 binding is also correlated to DSB frequency and enhanced on small chromosomes with higher DSB and crossover density. The axis protein Red1 is required for Msh5 association with the chromosome axes and DSB hotspots but not centromeres. Although binding sites of Msh5 and other pro-crossover factors like Zip3 show extensive overlap, Msh5 associates with centromeres independent of Zip3. These results on Msh5 localization in wild type and meiotic mutants have implications for how Msh4-Msh5 works with other pro-crossover factors to ensure crossover formation.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1456-1456
Author(s):  
Laurie A Steiner ◽  
Vincent Schulz ◽  
Yelena Maksimova ◽  
David Tuck ◽  
Patrick G. Gallagher

Abstract Abstract 1456 Poster Board I-479 USF1 and USF2 are ubiquitously expressed basic helix-loop-helix leucine zipper proteins that participate in a large number of biologic processes. USF1 and USF2 bind DNA as homodimers or heterodimers, typically binding E box consensus motifs. One role of USF proteins is functioning as transcription factors. Although ubiquitously expressed, they regulate expression of many cell-type and developmental-stage specific genes, such as hepcidin in hepatocytes and surfactant protein A in fetal lung cells. Another role of USF proteins is in the maintenance of chromatin architecture in barrier insulator elements, such as the well characterized 5'HS4 insulator element in the chicken beta-globin locus. In mammalian erythroid cells, USF1 and USF2 participate in the regulation of beta-globin transcription, interacting both at hypersensitive site 2 (HS2) of the beta-globin locus control region (LCR) and at the beta-globin promoter. Depletion of USF proteins leads to decreased beta-globin production. We hypothesize that in addition to beta-globin, USF proteins are important for regulation of many erythroid expressed genes. To address this hypothesis, chromatin immunoprecipitation with antibodies against USF1 and USF2 was coupled with ultra high throughput, massively parallel sequencing (Illumina Solexa sequencing, ChIP-seq) to generate a genome-wide map of USF1 and USF2 occupancy in primary erythroid cells. To generate cells for ChIP and mRNA expression profiling, human CD34+ cells isolated from peripheral blood were cultured in serum free media with erythropoietin to induce erythroid differentiation. After 14 days in culture, FACS analysis was used to confirm cells were positive for both CD 71 and glycophorin A (the R3/R4 stage of erythroid development). mRNA transcript analyses were performed using Illumina human V6-2 expression arrays and quantitative real time RT-PCR. ChIP-seq experiments for USF1 and USF2 were done in duplicate and only binding sites present in both ChIP-seq replicates were included in data analyses. A total of 20450 USF1 and 21128 USF2 sites of occupancy were identified. Co-localization of USF1 and USF2 was common, with 16739 sites binding both USF1 and USF2 (81.9% of USF1 sites and 79.2% of USF2 sites). In an analysis of a subset of erythroid expressed focus genes, USF binding was associated with active transcription. In agreement with previous studies, there was binding of USF proteins in the beta-globin LCR, and beta-globin promoter. USF binding most commonly occurred close to annotated genes, with 48.5% of USF1 sites, 44.6% of USF 2 sites and 53.0% of sites of USF1-USF2 co-localization located within 1 kb of a transcription start site (TSS), supporting the role of USF proteins as a transcription factor in these locations. A small, but significant, number of USF binding sites were located in intergenic regions > 100 kb from any annotated TSS. (1206 USF1, 1408 USF2, and 776 USF1-USF2). Interestingly, at sites of intergenic binding, USF1 and USF2 were much less likely to co-localize, (64% of USF1 and 55% of USF2 sites), implying that the USF proteins serve a different function at these remote binding sites than at sites of binding in close proximity to a TSS. USF proteins can bind DNA in an E-box dependent or independent manner. The Weeder Algorithm (Pavesi, Bioinformatics, 2001) was used to determine the most common binding motifs for USF1 and USF2. Over-represented motifs at sites of USF1 and USF2 binding were similar, with the most common sequences being a canonical E-box, CACGTG, as well as the related sequences ACGTGA and TCACGT. This genome-wide map of USF binding correlated with mRNA expression data indicates that USF proteins serve several different, important functions throughout the human genome and support the hypothesis that USF proteins participate in the regulation of many erythroid-expressed genes. Disclosures No relevant conflicts of interest to declare.


2011 ◽  
Vol 89 (5) ◽  
pp. 505-513 ◽  
Author(s):  
Jean-François Millau ◽  
Luc Gaudreau

During the last decades our view of the genome organization has changed. We moved from a linear view to a looped view of the genome. It is now well established that inter- and intra-connections occur between chromosomes and play a major role in gene regulations. These interconnections are mainly orchestrated by the CTCF protein, which is also known as the “master weaver” of the genome. Recent advances in sequencing and genome-wide studies revealed that CTCF binds to DNA at thousands of sites within the human genome, providing the possibility to form thousands of genomic connection hubs. Strikingly, two histone variants, namely H2A.Z and H3.3, strongly co-localize at CTCF binding sites. In this article, we will review the recent advances in CTCF biology and discuss the role of histone variants H2A.Z and H3.3 at CTCF binding sites.


Sign in / Sign up

Export Citation Format

Share Document