scholarly journals Electronic Circular Dichroism of the Cas9 Protein and gRNA:Cas9 Ribonucleoprotein Complex

2021 ◽  
Vol 22 (6) ◽  
pp. 2937
Author(s):  
Monika Halat ◽  
Magdalena Klimek-Chodacka ◽  
Jagoda Orleanska ◽  
Malgorzata Baranska ◽  
Rafal Baranski

The Streptococcus pyogenes Cas9 protein (SpCas9), a component of CRISPR-based immune system in microbes, has become commonly utilized for genome editing. This nuclease forms a ribonucleoprotein (RNP) complex with guide RNA (gRNA) which induces Cas9 structural changes and triggers its cleavage activity. Here, electronic circular dichroism (ECD) spectroscopy was used to confirm the RNP formation and to determine its individual components. The ECD spectra had characteristic features differentiating Cas9 and gRNA, the former showed a negative/positive profile with maxima located at 221, 209 and 196 nm, while the latter revealed positive/negative/positive/negative pattern with bands observed at 266, 242, 222 and 209 nm, respectively. For the first time, the experimental ECD spectrum of the gRNA:Cas9 RNP complex is presented. It exhibits a bisignate positive/negative ECD couplet with maxima at 273 and 235 nm, and it differs significantly from individual spectrum of each RNP components. Additionally, the Cas9 protein and RNP complex retained biological activity after ECD measurements and they were able to bind and cleave DNA in vitro. Hence, we conclude that ECD spectroscopy can be considered as a quick and non-destructive method of monitoring conformational changes of the Cas9 protein as a result of Cas9 and gRNA interaction, and identification of the gRNA:Cas9 RNP complex.

2005 ◽  
Vol 70 (11) ◽  
pp. 1799-1810 ◽  
Author(s):  
Jakub Nový ◽  
Marie Urbanová ◽  
Karel Volka

The interactions of three different porphyrins, without axial ligands - 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin-Cu(II) tetrachloride (Cu(II)TMPyP), with axial ligands - 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin-Fe(III) pentachloride (Fe(III)TMPyP), and with bulky meso substituents - 5,10,15,20-tetrakis(N,N,N-trimethylanilinium-4-yl)-porphyrin tetrachloride (TMAP), with calf thymus DNA were studied by combination of vibrational circular dichroism (VCD) and electronic circular dichroism (ECD) spectroscopy, and by IR and UV-VIS absorption spectroscopy. It has been shown that Cu(II)TMPyP prefers the intercalative binding mode with DNA in the GC-rich regions and the intercalative sites are saturated at the c(DNA)/c(Cu(II)TMPyP) ratio ~3:1, where c(DNA) and c(Cu(II)TMPyP) are total molar concentrations of nucleic acid in base pairs and porphyrin, respectively. Fe(III)TMPyP does not intercalate between the GC base pairs but binds to DNA in the minor groove. At higher c(DNA)/c(TMAP) ratios, TMAP interacts with DNA in the minor groove, but at lower ratios in the major groove and by the external binding mode accompanied by self-stacking of porphyrins along the phosphate backbone. VCD spectroscopy reliably discriminates the binding modes and specifies the conformational changes of the DNA matrices. It has been also shown that VCD spectroscopy is an effective tool for the conformational studies of DNA-porphyrin complexes. New spectroscopic "markers" in VCD spectra have been found for the specific DNA-porphyrin interactions.


2017 ◽  
Vol 12 (1) ◽  
pp. 1934578X1701200
Author(s):  
Wen-Juan Yuan ◽  
Wen-Fen Gao ◽  
Jia-Hui Zhang ◽  
Pei Cao ◽  
Yu Zhang ◽  
...  

(+)-Perforison A and (-)-perforison A, a new pair of chromone enantiomers, along with four known compounds, were isolated from the leaves and stems of Harrisonia perforata. Their structures and absolute configurations were determined on the basis of extensive analysis of spectroscopic data and electronic circular dichroism (ECD) calculations. The cytotoxic activities in vitro of these compounds were evaluated, but none showed significant activity.


Science ◽  
2020 ◽  
Vol 368 (6498) ◽  
pp. 1465-1468 ◽  
Author(s):  
Steven Daly ◽  
Frédéric Rosu ◽  
Valérie Gabelica

DNA and proteins are chiral: Their three-dimensional structures cannot be superimposed with their mirror images. Circular dichroism spectroscopy is widely used to characterize chiral compounds, but data interpretation is difficult in the case of mixtures. We recorded the electronic circular dichroism spectra of DNA helices separated in a mass spectrometer. We studied guanine-rich strands having various secondary structures, electrosprayed them as negative ions, irradiated them with an ultraviolet nanosecond optical parametric oscillator laser, and measured the difference in electron photodetachment efficiency between left and right circularly polarized light. The reconstructed circular dichroism ion spectra resembled those of their solution-phase counterparts, thereby allowing us to assign the DNA helical topology. The ability to measure circular dichroism directly on biomolecular ions expands the capabilities of mass spectrometry for structural analysis.


Planta Medica ◽  
2021 ◽  
Author(s):  
Qian Yang ◽  
An Jia ◽  
Xizi Liu ◽  
Shiyi Han ◽  
Siyang Fan

AbstractA new sesquiterpene, chlorantholide G (1), a new sesquiterpene dimer, elatiolactone (2), and 2 new diterpenes, elatiorlabdane B (3) and elatiorlabdane C (4), together with 51 known compounds, were isolated from the aerial parts of Chloranthus elatior. The new structures including their absolute configurations were mainly established by mass spectrometric, NMR, and electronic circular dichroism experiments. All isolated compounds were tested for their anti-hDHODH activity. (4S,6R)-4-hydroxy-6-isopropyl-3-methylcyclohex-2-enone (5) and (4S,5R,9S,10R)-8(17),12,14-labdatrien-18-oic acid (29) were the most active compounds with IC50 values of 18.7 and 30.7 µM, respectively.


Sign in / Sign up

Export Citation Format

Share Document