The DNA-Porphyrin Interactions Studied by Vibrational and Electronic Circular Dichroism Spectroscopy

2005 ◽  
Vol 70 (11) ◽  
pp. 1799-1810 ◽  
Author(s):  
Jakub Nový ◽  
Marie Urbanová ◽  
Karel Volka

The interactions of three different porphyrins, without axial ligands - 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin-Cu(II) tetrachloride (Cu(II)TMPyP), with axial ligands - 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin-Fe(III) pentachloride (Fe(III)TMPyP), and with bulky meso substituents - 5,10,15,20-tetrakis(N,N,N-trimethylanilinium-4-yl)-porphyrin tetrachloride (TMAP), with calf thymus DNA were studied by combination of vibrational circular dichroism (VCD) and electronic circular dichroism (ECD) spectroscopy, and by IR and UV-VIS absorption spectroscopy. It has been shown that Cu(II)TMPyP prefers the intercalative binding mode with DNA in the GC-rich regions and the intercalative sites are saturated at the c(DNA)/c(Cu(II)TMPyP) ratio ~3:1, where c(DNA) and c(Cu(II)TMPyP) are total molar concentrations of nucleic acid in base pairs and porphyrin, respectively. Fe(III)TMPyP does not intercalate between the GC base pairs but binds to DNA in the minor groove. At higher c(DNA)/c(TMAP) ratios, TMAP interacts with DNA in the minor groove, but at lower ratios in the major groove and by the external binding mode accompanied by self-stacking of porphyrins along the phosphate backbone. VCD spectroscopy reliably discriminates the binding modes and specifies the conformational changes of the DNA matrices. It has been also shown that VCD spectroscopy is an effective tool for the conformational studies of DNA-porphyrin complexes. New spectroscopic "markers" in VCD spectra have been found for the specific DNA-porphyrin interactions.

2021 ◽  
Vol 22 (6) ◽  
pp. 2937
Author(s):  
Monika Halat ◽  
Magdalena Klimek-Chodacka ◽  
Jagoda Orleanska ◽  
Malgorzata Baranska ◽  
Rafal Baranski

The Streptococcus pyogenes Cas9 protein (SpCas9), a component of CRISPR-based immune system in microbes, has become commonly utilized for genome editing. This nuclease forms a ribonucleoprotein (RNP) complex with guide RNA (gRNA) which induces Cas9 structural changes and triggers its cleavage activity. Here, electronic circular dichroism (ECD) spectroscopy was used to confirm the RNP formation and to determine its individual components. The ECD spectra had characteristic features differentiating Cas9 and gRNA, the former showed a negative/positive profile with maxima located at 221, 209 and 196 nm, while the latter revealed positive/negative/positive/negative pattern with bands observed at 266, 242, 222 and 209 nm, respectively. For the first time, the experimental ECD spectrum of the gRNA:Cas9 RNP complex is presented. It exhibits a bisignate positive/negative ECD couplet with maxima at 273 and 235 nm, and it differs significantly from individual spectrum of each RNP components. Additionally, the Cas9 protein and RNP complex retained biological activity after ECD measurements and they were able to bind and cleave DNA in vitro. Hence, we conclude that ECD spectroscopy can be considered as a quick and non-destructive method of monitoring conformational changes of the Cas9 protein as a result of Cas9 and gRNA interaction, and identification of the gRNA:Cas9 RNP complex.


2008 ◽  
Vol 12 (12) ◽  
pp. 1270-1278 ◽  
Author(s):  
Vladimír Setnička ◽  
Jan Hlaváček ◽  
Marie Urbanová

Vibrational (VCD) and electronic circular dichroism (ECD) spectroscopies were used to investigate non-covalent interactions between the cationic tripeptide L-lysyl-L-alanyl-L-alanine (KAA) and the anionic porphyrin meso-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) in aqueous solution. Also studied were the interactions between KAA and the three metal derivatives of TPPS (copper(II), iron(III), and manganese(III)), each of which has a different number of axial ligands. VCD spectra in the amide I' ( C = O stretching vibration) region are extremely sensitive to peptide conformation, and, consequently, provide direct information about the conformational changes of host oligopeptide matrices caused by electrostatic interaction with guest porphyrin molecules. We found that pure KAA adopts a left-handed polyproline II (PPII) helical conformation when dissolved in aqueous solution at near-neutral pH values. When mixed with metal-free TPPS under the same conditions, VCD intensities were markedly reduced in the amide I' region and a new negative band was observed at 1634 cm−1; both findings indicating the transition of the PPII conformation into a less compact structure having similarities to β-sheet, herein termed a β-sheet-like conformation. In the case of the metal derivatives of TPPS studied, only variations in the VCD intensities in the amide I' region were observed. Compared to the results for pure KAA, the binding of Cu (II) TPPS , which has no axial ligand, resulted in the greatest decrease in amide I' VCD intensity. Nevertheless, the shape of a VCD spectrum characteristic for a PPII conformation was maintained, thereby indicating the presence of an “extended” PPII conformation in the Cu (II) TPPS -KAA complex. Conversely, Mn (III) TPPS , which has two axial ligands, did not significantly affect the PPII conformation of KAA in the Mn (III) TPPS -KAA complex. The effects of the metalation and axial ligation of TPPS on the conformation of KAA in peptide-porphyrin complexes are discussed, together with the results of our ECD study.


Science ◽  
2020 ◽  
Vol 368 (6498) ◽  
pp. 1465-1468 ◽  
Author(s):  
Steven Daly ◽  
Frédéric Rosu ◽  
Valérie Gabelica

DNA and proteins are chiral: Their three-dimensional structures cannot be superimposed with their mirror images. Circular dichroism spectroscopy is widely used to characterize chiral compounds, but data interpretation is difficult in the case of mixtures. We recorded the electronic circular dichroism spectra of DNA helices separated in a mass spectrometer. We studied guanine-rich strands having various secondary structures, electrosprayed them as negative ions, irradiated them with an ultraviolet nanosecond optical parametric oscillator laser, and measured the difference in electron photodetachment efficiency between left and right circularly polarized light. The reconstructed circular dichroism ion spectra resembled those of their solution-phase counterparts, thereby allowing us to assign the DNA helical topology. The ability to measure circular dichroism directly on biomolecular ions expands the capabilities of mass spectrometry for structural analysis.


Planta Medica ◽  
2021 ◽  
Author(s):  
Qian Yang ◽  
An Jia ◽  
Xizi Liu ◽  
Shiyi Han ◽  
Siyang Fan

AbstractA new sesquiterpene, chlorantholide G (1), a new sesquiterpene dimer, elatiolactone (2), and 2 new diterpenes, elatiorlabdane B (3) and elatiorlabdane C (4), together with 51 known compounds, were isolated from the aerial parts of Chloranthus elatior. The new structures including their absolute configurations were mainly established by mass spectrometric, NMR, and electronic circular dichroism experiments. All isolated compounds were tested for their anti-hDHODH activity. (4S,6R)-4-hydroxy-6-isopropyl-3-methylcyclohex-2-enone (5) and (4S,5R,9S,10R)-8(17),12,14-labdatrien-18-oic acid (29) were the most active compounds with IC50 values of 18.7 and 30.7 µM, respectively.


1980 ◽  
Vol 255 (15) ◽  
pp. 7059-7062
Author(s):  
L. Feldman ◽  
N.V. Beaudette ◽  
B.D. Stollar ◽  
G.D. Fasman

2021 ◽  
Author(s):  
Kun Won Lee ◽  
Ahmed H. E. Hassan ◽  
Youngdo Jeong ◽  
Seolmin Yoon ◽  
Seung-Hwan Kim ◽  
...  

Enantioseparation and assignment of absolute configuration of methoxetamine (MXE) enantiopure stereoisomers; a promising novel antidepressant for management of treatment-resistant depression.


Sign in / Sign up

Export Citation Format

Share Document